Meta-learning, or learning to learn, is the science of systematically observing how different machine learning approaches perform on a wide range of learning tasks, and then learning from this experience, or meta-data, to learn new tasks much faster than otherwise possible. Not only does this dramatically speed up and improve the design of machine learning pipelines or neural architectures, it also allows us to replace hand-engineered algorithms with novel approaches learned in a data-driven way. In this chapter, we provide an overview of the state of the art in this fascinating and continuously evolving field.


翻译:元学习或学习是系统观察不同机器学习方法如何在一系列广泛的学习任务中发挥作用的科学,然后从这一经验或元数据中学习,以比其他可能更快的速度学习新任务。 这不仅大大加快并改进机器学习管道或神经结构的设计,还使我们能够用以数据驱动方式学习的新颖方法取代手工设计的算法。 在本章中,我们概述了这一令人着迷和不断发展的领域的最新技术。

136
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
281+阅读 · 2020年5月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
AutoML: A Survey of the State-of-the-Art
Arxiv
75+阅读 · 2019年8月14日
Few-shot Learning: A Survey
Arxiv
363+阅读 · 2019年4月10日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
元学习(meta learning) 最新进展综述论文
专知会员服务
281+阅读 · 2020年5月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
相关论文
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
AutoML: A Survey of the State-of-the-Art
Arxiv
75+阅读 · 2019年8月14日
Few-shot Learning: A Survey
Arxiv
363+阅读 · 2019年4月10日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员