Meta-learning, or learning to learn, is the science of systematically observing how different machine learning approaches perform on a wide range of learning tasks, and then learning from this experience, or meta-data, to learn new tasks much faster than otherwise possible. Not only does this dramatically speed up and improve the design of machine learning pipelines or neural architectures, it also allows us to replace hand-engineered algorithms with novel approaches learned in a data-driven way. In this chapter, we provide an overview of the state of the art in this fascinating and continuously evolving field.
翻译:元学习或学习是系统观察不同机器学习方法如何在一系列广泛的学习任务中发挥作用的科学,然后从这一经验或元数据中学习,以比其他可能更快的速度学习新任务。 这不仅大大加快并改进机器学习管道或神经结构的设计,还使我们能够用以数据驱动方式学习的新颖方法取代手工设计的算法。 在本章中,我们概述了这一令人着迷和不断发展的领域的最新技术。