We reduce the computational cost of Neural AutoML with transfer learning. AutoML relieves human effort by automating the design of ML algorithms. Neural AutoML has become popular for the design of deep learning architectures, however, this method has a high computation cost.To address this we propose Transfer Neural AutoML that uses knowledge from prior tasks to speed up network design. We extend RL-based architecture search methods to support parallel training on multiple tasks and then transfer the search strategy to new tasks. On language and image classification data, Transfer Neural AutoML reduces convergence time over single-task training by over an order of magnitude on many tasks.
翻译:我们通过转移学习来降低神经自动移动的计算成本。 自动移动解除了人类的努力,将ML算法的设计自动化。 神经自动移动在深层学习结构的设计中变得很受欢迎, 但是,这个方法的计算成本很高。 为了解决这个问题,我们提议转移神经自动移动, 利用先前任务的知识来加快网络设计。 我们扩展基于RL的建筑搜索方法, 以支持关于多重任务的平行培训, 然后将搜索战略转移到新的任务。 关于语言和图像分类数据, 传输神经自动移动将单任务培训的融合时间减少, 超过许多任务的规模 。