A major goal of unsupervised learning is to discover data representations that are useful for subsequent tasks, without access to supervised labels during training. Typically, this goal is approached by minimizing a surrogate objective, such as the negative log likelihood of a generative model, with the hope that representations useful for subsequent tasks will arise incidentally. In this work, we propose instead to directly target a later desired task by meta-learning an unsupervised learning rule, which leads to representations useful for that task. Here, our desired task (meta-objective) is the performance of the representation on semi-supervised classification, and we meta-learn an algorithm -- an unsupervised weight update rule -- that produces representations that perform well under this meta-objective. Additionally, we constrain our unsupervised update rule to a be a biologically-motivated, neuron-local function, which enables it to generalize to novel neural network architectures. We show that the meta-learned update rule produces useful features and sometimes outperforms existing unsupervised learning techniques. We further show that the meta-learned unsupervised update rule generalizes to train networks with different widths, depths, and nonlinearities. It also generalizes to train on data with randomly permuted input dimensions and even generalizes from image datasets to a text task.
翻译:未经监督的学习的一个主要目标是发现对以后的任务有用的数据表示方式,在培训期间不使用受监督的标签。 通常,通过尽量减少替代目标,例如基因模型的负日志可能性,来达到这个目标,希望对以后的任务有用。 在这项工作中,我们提议直接确定后期任务的目标,办法是通过未经监督的学习规则,从而形成对这项任务有用的表示方式。 在这里,我们所期望的任务(元目标)是半监督分类的表示方式,而我们元学习的算法 -- -- 一种不受监督的重量更新规则 -- -- 能够产生在这个元目标下良好运作的表示方式。此外,我们限制我们未经监督的更新规则,使之成为一种具有生物动机、神经和局部功能的更新规则,使其能够概括到新的神经网络结构。我们显示,元学习更新规则产生了有用的特点,有时超越了现有的未经监督的学习技术。我们进一步显示,元学习的元学习方法甚至没有监督的更新规则的更新方式,能够在这个元目标下产生良好的表现方式。 此外,我们限制我们不受监督的更新规则,要用不同的深度来训练不同层次的网络。