We study the problem of chasing positive bodies in $\ell_1$: given a sequence of bodies $K_{t}=\{x^{t}\in\mathbb{R}_{+}^{n}\mid C^{t}x^{t}\geq 1,P^{t}x^{t}\leq 1\}$ revealed online, where $C^{t}$ and $P^{t}$ are nonnegative matrices, the goal is to (approximately) maintain a point $x_t \in K_t$ such that $\sum_t \|x_t - x_{t-1}\|_1$ is minimized. This captures the fully-dynamic low-recourse variant of any problem that can be expressed as a mixed packing-covering linear program and thus also the fractional version of many central problems in dynamic algorithms such as set cover, load balancing, hyperedge orientation, minimum spanning tree, and matching. We give an $O(\log d)$-competitive algorithm for this problem, where $d$ is the maximum row sparsity of any matrix $C^t$. This bypasses and improves exponentially over the lower bound of $\sqrt{n}$ known for general convex bodies. Our algorithm is based on iterated information projections, and, in contrast to general convex body chasing algorithms, is entirely memoryless. We also show how to round our solution dynamically to obtain the first fully dynamic algorithms with competitive recourse for all the stated problems above; i.e. their recourse is less than the recourse of every other algorithm on every update sequence, up to polylogarithmic factors. This is a significantly stronger notion than the notion of absolute recourse in the dynamic algorithms literature.


翻译:我们研究在线追逐正身体的问题,在$l_1$中给定一系列体:$K_{t} = \{ x^{t}\in\mathbb{R}_{+}^{n}\mid C^{t}x^{t}\geq 1,P^{t}x^{t}\leq 1 \}$,其中$C^{t}$和$P^{t}$是非负矩阵,目标是(近似)维护一个点$x_t$使得$\sum_t \|x_t - x_{t-1}\|_1$最小。这个问题涵盖了任何可以表达为混合装填 - 覆盖线性规划的问题的完全动态低资源消耗变体,因此也就是动态算法中许多核心问题的分数版本,比如集合覆盖,负载均衡,超边定向,最小生成树和匹配等问题。我们为这个问题提供了一个$O(\log d)$-有竞争力的算法,其中$d$是任何矩阵$C^t$的最大行稀疏度。与一般凸体追逐算法相比,这种方法弥补了指数级别的下限并进行了改进。我们的算法基于迭代信息投影,并且与一般凸体追逐算法不同,是完全无记忆的。我们还展示了如何动态舍入我们的解以获得第一个有竞争资源的全动态算法,涵盖了所有上述问题;即它们的资源消耗比任何其他算法在任何更新序列上都要小,相差仅仅是多个对数因子。这比动态算法文献中绝对资源的概念更强。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
124+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
124+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员