Miguel Domingo, Álvaro Peris and Francisco Casacuberta. 2018. Segment-based interactive-predictive machine translation. Machine Translation.[https://www.researchgate.net/publication/322275484_Segment-based_interactive-predictive_machine_translation] [Citation: 2]
Xin Wang, Wenhu Chen, Yuan-Fang Wang, and William Yang Wang. 2018. No Metrics Are Perfect: Adversarial Reward Learning for Visual Storytelling. In Proceedings of ACL 2018.[http://aclweb.org/anthology/P18-1083] [Citation: 10]
Arun Tejasvi Chaganty, Stephen Mussman, and Percy Liang. 2018. The price of debiasing automatic metrics in natural language evaluation.[https://arxiv.org/pdf/1807.02202] [In Proceedings of ACL 2018.]
Xin Wang, Wenhu Chen, Yuan-Fang Wang, and William Yang Wang. 2018. No Metrics Are Perfect: Adversarial Reward Learning for Visual Storytelling. In Proceedings of ACL 2018. (Citation: 10)
Arun Tejasvi Chaganty, Stephen Mussman, and Percy Liang. 2018. The price of debiasing automatic metrics in natural language evaluation. In Proceedings of ACL 2018.
Lukasz Kaiser, Aidan N. Gomez, and Francois Chollet. 2018. Depthwise Separable Convolutions for Neural Machine Translation. In Proceedings of ICLR 2018. (Citation: 27)
Yanyao Shen, Xu Tan, Di He, Tao Qin, and Tie-Yan Liu. 2018. Dense Information Flow for Neural Machine Translation. In Proceedings of NAACL 2018. (Citation: 3)
Wenhu Chen, Guanlin Li, Shuo Ren, Shujie Liu, Zhirui Zhang, Mu Li, and Ming Zhou. 2018. Generative Bridging Network for Neural Sequence Prediction. In Proceedings of NAACL 2018. (Citation: 3)
Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster, Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Zhifeng Chen, Yonghui Wu, and Macduff Hughes. 2018. The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation. In Proceedings of ACL 2018. (Citation: 22)
Weiyue Wang, Derui Zhu, Tamer Alkhouli, Zixuan Gan, and Hermann Ney. 2018. Neural Hidden Markov Model for Machine Translation. In Proceedings of ACL 2018. (Citation: 3)
Jingjing Gong, Xipeng Qiu, Shaojing Wang, and Xuanjing Huang. 2018. Information Aggregation via Dynamic Routing for Sequence Encoding. In COLING 2018.
Qiang Wang, Fuxue Li, Tong Xiao, Yanyang Li, Yinqiao Li, and Jingbo Zhu. 2018. Multi-layer Representation Fusion for Neural Machine Translation. In Proceedings of COLING 2018 .
Yachao Li, Junhui Li, and Min Zhang. 2018. Adaptive Weighting for Neural Machine Translation. In Proceedings of COLING 2018 .
Kaitao Song, Xu Tan, Di He, Jianfeng Lu, Tao Qin, and Tie-Yan Liu. 2018. Double Path Networks for Sequence to Sequence Learning. In Proceedings of COLING 2018 .
Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi, and Tong Zhang. 2018. Exploiting Deep Representations for Neural Machine Translation. In Proceedings of EMNLP 2018 . (Citation: 1)
Biao Zhang, Deyi Xiong, Jinsong Su, Qian Lin, and Huiji Zhang. 2018. Simplifying Neural Machine Translation with Addition-Subtraction Twin-Gated Recurrent Networks. In Proceedings of EMNLP 2018 .
Gongbo Tang, Mathias Müller, Annette Rios, and Rico Sennrich. 2018. Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Architectures. In Proceedings of EMNLP 2018 . (Citation: 6)
Ke Tran, Arianna Bisazza, and Christof Monz. 2018. The Importance of Being Recurrent for Modeling Hierarchical Structure. In Proceedings of EMNLP 2018 . (Citation: 6)
Parnia Bahar, Christopher Brix, and Hermann Ney. 2018. Towards Two-Dimensional Sequence to Sequence Model in Neural Machine Translation. In Proceedings of EMNLP 2018 . (Citation: 1)
Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo Chen, and Tie-Yan Liu. 2018. Layer-Wise Coordination between Encoder and Decoder for Neural Machine Translation. In Proceedings of NeurIPS 2018 . (Citation: 2)
Harshil Shah and David Barber. 2018. Generative Neural Machine Translation. In Proceedings of NeurIPS 2018 .
Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming Zhou. 2018. Achieving Human Parity on Automatic Chinese to English News Translation. Technical report. Microsoft AI & Research. (Citation: 41)
Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi Zhang. 2018. DiSAN: Directional Self-Attention Network for RNN/CNN-Free Language Understanding. In Proceedings of AAAI 2018 . (Citation: 60)
Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. 2018. Bi-directional Block Self-attention for Fast and Memory-efficient Sequence Modeling. In Proceedings of ICLR 2018 . (Citation: 13)
Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Sen Wang, Chengqi Zhang. 2018. Reinforced Self-Attention Network: a Hybrid of Hard and Soft Attention for Sequence Modeling. In Proceedings of IJCAI 2018 . (Citation: 18)
Peter Shaw, Jakob Uszkorei, and Ashish Vaswani. 2018. Self-Attention with Relative Position Representations. In Proceedings of NAACL 2018 . (Citation: 24)
Lesly Miculicich Werlen, Nikolaos Pappas, Dhananjay Ram, and Andrei Popescu-Belis. 2018. Self-Attentive Residual Decoder for Neural Machine Translation. In Proceedings of NAACL 2018 . (Citation: 3)
Xintong Li, Lemao Liu, Zhaopeng Tu, Shuming Shi, and Max Meng. 2018. Target Foresight Based Attention for Neural Machine Translation. In Proceedings of NAACL 2018 .
Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accelerating Neural Transformer via an Average Attention Network. In Proceedings of ACL 2018 . (Citation: 5)
Tobias Domhan. 2018. How Much Attention Do You Need? A Granular Analysis of Neural Machine Translation Architectures. In Proceedings of ACL 2018 . (Citation: 3)
Shaohui Kuang, Junhui Li, António Branco, Weihua Luo, and Deyi Xiong. 2018. Attention Focusing for Neural Machine Translation by Bridging Source and Target Embeddings. In Proceedings of ACL 2018 . (Citation: 1)
Chaitanya Malaviya, Pedro Ferreira, and André F. T. Martins. 2018. Sparse and Constrained Attention for Neural Machine Translation. In Proceedings of ACL 2018 . (Citation: 4)
Jian Li, Zhaopeng Tu, Baosong Yang, Michael R. Lyu, and Tong Zhang. 2018. Multi-Head Attention with Disagreement Regularization. In Proceedings of EMNLP 2018 . (Citation: 1)
Wei Wu, Houfeng Wang, Tianyu Liu and Shuming Ma. 2018. Phrase-level Self-Attention Networks for Universal Sentence Encoding. In Proceedings of EMNLP 2018 .
Baosong Yang, Zhaopeng Tu, Derek F. Wong, Fandong Meng, Lidia S. Chao, and Tong Zhang. 2018. Modeling Localness for Self-Attention Networks. In Proceedings of EMNLP 2018 . (Citation: 2)
Junyang Lin, Xu Sun, Xuancheng Ren, Muyu Li, and Qi Su. 2018. Learning When to Concentrate or Divert Attention: Self-Adaptive Attention Temperature for Neural Machine Translation. In Proceedings of EMNLP 2018 .
Shiv Shankar, Siddhant Garg, and Sunita Sarawagi. 2018. Surprisingly Easy Hard-Attention for Sequence to Sequence Learning. In Proceedings of EMNLP 2018 .
Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao, and Yonghui Wu. 2018. Training Deeper Neural Machine Translation Models with Transparent Attention. In Proceedings of EMNLP 2018 .
Hareesh Bahuleyan, Lili Mou, Olga Vechtomova, and Pascal Poupart. 2018. Variational Attention for Sequence-to-Sequence Models. In Proceedings of COLING 2018 . (Citation: 14)
Maha Elbayad, Laurent Besacier, and Jakob Verbeek. 2018. Pervasive Attention: 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction. In Proceedings of CoNLL 2018 . (Citation: 4)
Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and Alexander M. Rush. 2018 Latent Alignment and Variational Attention. In Proceedings of NeurIPS 2018 . (Citation)
Peyman Passban, Qun Liu, and Andy Way. 2018. Improving Character-Based Decoding Using Target-Side Morphological Information for Neural Machine Translation. In Proceedings of NAACL 2018 . (Citation: 5)
Huadong Chen, Shujian Huang, David Chiang, Xinyu Dai, and Jiajun Chen. 2018. Combining Character and Word Information in Neural Machine Translation Using a Multi-Level Attention. In Proceedings of NAACL 2018 .
Frederick Liu, Han Lu, and Graham Neubig. 2018. Handling Homographs in Neural Machine Translation. In Proceedings of NAACL 2018 . (Citation: 8)
Taku Kudo. 2018. Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates. In Proceedings of ACL 2018 . (Citation: 17)
Makoto Morishita, Jun Suzuki, and Masaaki Nagata. 2018. Improving Neural Machine Translation by Incorporating Hierarchical Subword Features. In Proceedings of COLING 2018 .
Yang Zhao, Jiajun Zhang, Zhongjun He, Chengqing Zong, and Hua Wu. 2018. Addressing Troublesome Words in Neural Machine Translation. In Proceedings of EMNLP 2018 .
Colin Cherry, George Foster, Ankur Bapna, Orhan Firat, and Wolfgang Macherey. 2018. Revisiting Character-Based Neural Machine Translation with Capacity and Compression. In Proceedings of EMNLP 2018 . (Citation: 1)
Rebecca Knowles and Philipp Koehn. 2018. Context and Copying in Neural Machine Translation. In Proceedings of EMNLP 2018 .
Sergey Edunov, Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. 2018. Classical Structured Prediction Losses for Sequence to Sequence Learning. In Proceedings of NAACL 2018 . (Citation: 20)
Zihang Dai, Qizhe Xie, and Eduard Hovy. 2018. From Credit Assignment to Entropy Regularization: Two New Algorithms for Neural Sequence Prediction. In Proceedings of ACL 2018 . (Citation: 1)
Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2018. Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets. In Proceedings of NAACL 2018 . (Citation: 43)
Kevin Clark, Minh-Thang Luong, Christopher D. Manning, and Quoc Le. 2018. Semi-Supervised Sequence Modeling with Cross-View Training. In Proceedings of EMNLP 2018 .
Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-Yan Liu. 2018. A Study of Reinforcement Learning for Neural Machine Translation. In Proceedings of EMNLP 2018 . (Citation: 2)
Jason Lee, Elman Mansimov, and Kyunghyun Cho. 2018. Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement. In Proceedings of EMNLP 2018 .
Semih Yavuz, Chung-Cheng Chiu, Patrick Nguyen, and Yonghui Wu. 2018. CaLcs: Continuously Approximating Longest Common Subsequence for Sequence Level Optimization. In Proceedings of EMNLP 2018 .
Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Jianhuang Lai, and Tie-Yan Liu. 2018. Learning to Teach with Dynamic Loss Functions. In Proceedings of NeurIPS 2018 .
Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. 2018. Non-Autoregressive Neural Machine Translation. In Proceedings of ICLR 2018 . (Citation: 23)
Łukasz Kaiser, Aurko Roy, Ashish Vaswani, Niki Parmar, Samy Bengio, Jakob Uszkoreit, and Noam Shazeer. 2018. Fast Decoding in Sequence Models Using Discrete Latent Variables. In Proceedings of ICML 2018 . (Citation: 3)
Xiangwen Zhang, Jinsong Su, Yue Qin, Yang Liu, Rongrong Ji, and Hongji Wang. 2018. Asynchronous Bidirectional Decoding for Neural Machine Translation. In Proceedings of AAAI 2018 . (Citation: 10)
Jiatao Gu, Daniel Jiwoong Im, and Victor O.K. Li. 2018. Neural machine translation with gumbel-greedy decoding. In Proceedings of AAAI 2018 . (Citation: 5)
Philip Schulz, Wilker Aziz, and Trevor Cohn. 2018. A Stochastic Decoder for Neural Machine Translation. In Proceedings of ACL 2018 . (Citation: 3)
Raphael Shu and Hideki Nakayama. 2018. Improving Beam Search by Removing Monotonic Constraint for Neural Machine Translation. In Proceedings of ACL 2018 .
Junyang Lin, Xu Sun, Xuancheng Ren, Shuming Ma, Jinsong Su, and Qi Su. 2018. Deconvolution-Based Global Decoding for Neural Machine Translation. In Proceedings of COLING 2018 . (Citation: 2)
Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018. Semi-Autoregressive Neural Machine Translation. In Proceedings of EMNLP 2018 .
Xinwei Geng, Xiaocheng Feng, Bing Qin, and Ting Liu. 2018. Adaptive Multi-pass Decoder for Neural Machine Translation. In Proceedings of EMNLP 2018 .
Wen Zhang, Liang Huang, Yang Feng, Lei Shen, and Qun Liu. 2018. Speeding Up Neural Machine Translation Decoding by Cube Pruning. In Proceedings of EMNLP 2018 .
Xinyi Wang, Hieu Pham, Pengcheng Yin, and Graham Neubig. 2018. A Tree-based Decoder for Neural Machine Translation. In Proceedings of EMNLP 2018 . (Citation: 1)
Chenze Shao, Xilin Chen, and Yang Feng. 2018. Greedy Search with Probabilistic N-gram Matching for Neural Machine Translation. In Proceedings of EMNLP 2018 .
Zhisong Zhang, Rui Wang, Masao Utiyama, Eiichiro Sumita, and Hai Zhao. 2018. Exploring Recombination for Efficient Decoding of Neural Machine Translation. In Proceedings of EMNLP 2018 .
Jetic Gū, Hassan S. Shavarani, and Anoop Sarkar. 2018. Top-down Tree Structured Decoding with Syntactic Connections for Neural Machine Translation and Parsing. In Proceedings of EMNLP 2018 .
Yilin Yang, Liang Huang, and Mingbo Ma. 2018. Breaking the Beam Search Curse: A Study of (Re-)Scoring Methods and Stopping Criteria for Neural Machine Translation. In Proceedings of EMNLP 2018 . (Citation: 3)
Yun Chen, Victor O.K. Li, Kyunghyun Cho, and Samuel R. Bowman. 2018. A Stable and Effective Learning Strategy for Trainable Greedy Decoding. In Proceedings of EMNLP 2018 .
初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,本文为专知内容组原创内容,未经允许不得转载,如需转载请发送邮件至fangquanyi@gmail.com 或 联系微信专知小助手(Rancho_Fang)
敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识