Adversarial team games model multiplayer strategic interactions in which a team of identically-interested players is competing against an adversarial player in a zero-sum game. Such games capture many well-studied settings in game theory, such as congestion games, but go well-beyond to environments wherein the cooperation of one team -- in the absence of explicit communication -- is obstructed by competing entities; the latter setting remains poorly understood despite its numerous applications. Since the seminal work of Von Stengel and Koller (GEB `97), different solution concepts have received attention from an algorithmic standpoint. Yet, the complexity of the standard Nash equilibrium has remained open. In this paper, we settle this question by showing that computing a Nash equilibrium in adversarial team games belongs to the class continuous local search (CLS), thereby establishing CLS-completeness by virtue of the recent CLS-hardness result of Rubinstein and Babichenko (STOC `21) in potential games. To do so, we leverage linear programming duality to prove that any $\epsilon$-approximate stationary strategy for the team can be extended in polynomial time to an $O(\epsilon)$-approximate Nash equilibrium, where the $O(\cdot)$ notation suppresses polynomial factors in the description of the game. As a consequence, we show that the Moreau envelop of a suitable best response function acts as a potential under certain natural gradient-based dynamics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月7日
Arxiv
84+阅读 · 2022年7月16日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员