项目名称: 3维Lorentz空间中的伪圆纹Willmore曲面与4维球面中的共形曲面论
项目编号: No.11426158
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 范林元
作者单位: 首都经济贸易大学
项目金额: 3万元
中文摘要: 本项目将研究3维Lorentz空间中伪圆的模空间中的共形不变量以及类空,类时,类光伪圆纹Willmore曲面的分类问题,并研究S^4中的共形曲面论及其应用。关于3维Lorentz空间中伪圆的共形不变量系统的研究具有重要作用,我们首先将对伪圆的模空间进行深入研究,并由此找出共形不变的度量,测地线,并由此来研究伪圆纹曲面的分类问题,我们将结合Willmore条件和零中曲率条件,来完全分类一些特殊的曲面;同时,在4维球面S^4中构造共形不变量系统,来研究共形曲面论。在项目的研究中希望找出几何对象Lorentz空间中伪圆纹曲面与代数结构模空间中测地线之间的联系,丰富它们的内容,发现新的方法及其应用。
中文关键词: 模空间;测地线;伪圆纹曲面;Willmore曲面;弹性曲线方程
英文摘要: In this project we study conformal invariants in Moduli space of 3-dimensional Lorentzian space and the classification of space-like, time-like, light-like pseudo cyclic surfaces, also we study conformal surface theory in S^4. It's important for us to focus on the conformal invariants system of pseudo circle in 3-dimensional Lorentzian space. Firstly, we study on the moduli space of pseudo circles so as to find out conformal invariant metric and geodesics, from which we classify some special surfaces with Willmore and Zero-Mean curvature conditions; moreover, we try to build conformal invariants system in S^4 to study conformal surface theory. We hope to find out the connections between pseudo cyclic surfaces and geodesics in moduli space which indicate connections between geometry and algebra, also to find out some new research methods and applications.
英文关键词: Moduli Space;Geodesic;Surface foliated by pseudo-circles;Willmore Surface;Elastic curve function