With the rapid growth of surveillance cameras in many public places to mon-itor human activities such as in malls, streets, schools and, prisons, there is a strong demand for such systems to detect violence events automatically. Au-tomatic analysis of video to detect violence is significant for law enforce-ment. Moreover, it helps to avoid any social, economic and environmental damages. Mostly, all systems today require manual human supervisors to de-tect violence scenes in the video which is inefficient and inaccurate. in this work, we interest in physical violence that involved two persons or more. This work proposed a novel method to detect violence using a fusion tech-nique of two significantly different convolutional neural networks (CNNs) which are AlexNet and SqueezeNet networks. Each network followed by separate Convolution Long Short Term memory (ConvLSTM) to extract ro-bust and richer features from a video in the final hidden state. Then, making a fusion of these two obtained states and fed to the max-pooling layer. Final-ly, features were classified using a series of fully connected layers and soft-max classifier. The performance of the proposed method is evaluated using three standard benchmark datasets in terms of detection accuracy: Hockey Fight dataset, Movie dataset and Violent Flow dataset. The results show an accuracy of 97%, 100%, and 96% respectively. A comparison of the results with the state of the art techniques revealed the promising capability of the proposed method in recognizing violent videos.
翻译:随着许多公共场所监视摄像机的迅速增长,人们的活动也会受到监视,比如在购物中心、街道、学校和监狱,因此对此类系统的需求非常强烈,以自动检测暴力事件。对视频进行自动分析以发现暴力对于执法来说意义重大。此外,还有助于避免任何社会、经济和环境损害。大多数情况下,所有系统都要求人工监督员在视频中解开暴力场景,因为视频中缺乏效率和不准确。在这项工作中,我们对涉及两个人或更多人的人身暴力感兴趣。这项工作提出了一个新颖的方法,用两个截然不同的革命性神经网络(CNNs)的聚合技术检测暴力事件,这两个网络是AlexNet和SquezeNet的网络。每个网络之后都有单独的革命性长时段记忆(ConvLSTM),以便从最后隐藏状态的视频中提取罗乱和更丰富的特征。随后,将这两个获得的状态混在一起,并反馈到最多层。最后,这些特征使用一系列完全连接的层和软式暴力性神经神经网络(CNNs)检测暴力神经网络(CNNs),这两个网络是AlexNet和SquezeezeNetnetnet网络网络网络。每个网络之后,将分别用一个独立的快速数据的准确性数据分析结果。拟议方法的性分析,用Areviolviolmamakenal 。 。 view d d dregalmaxal 的精确性数据,用一种方法分别评估了一种方法的精确性数据,用一种方法的精确性数据,用一种方法,用Aregimealmatal