魔改CNN揭秘宇宙大爆炸:物理学的核心是对称性

2022 年 2 月 5 日 量子位
博雯 发自 凹非寺
量子位 | 公众号 QbitAI

宇宙大爆炸刚刚发生的那几秒是什么样的?

这可以说是物理学领域中最复杂的问题之一了,就以大爆炸刚刚发生的几百万分之一秒内,宇宙的一种特殊的存在形态为例。

这是一种超高温下的“完美液态”,对探索宇宙本源物质的结构和环境有着及其重大的意义。

在实验室中,必须要在15万倍太阳中心温度的严苛环境下才能成功模拟这一形态。

要对这这种高度复杂的物理学形态进行分析或处理,超级计算机需要极长的时间逼近其形态,经典的AI或CNN也很难基于其中的物理学概念作出有意义的解释。

但现在,物理学顶刊PRL上的一篇论文提出了一种叫做L-CNN的新型神经网络结构,很好地解决了上面的问题:

如何处理规范不变量

在我们深入了解L-CNN的结构之前,先来明确一个事实:

传统AI和CNN做不到的任务到底是什么?

以开头提到的“完美液态”为例,这种形态是指在极高能量和温度下,质子和中子被拆解,并重新结合成一种叫做夸克胶子等离子体(QGP)的新型物质形态。

(最初物质形成之前的整个宇宙都是这种形态)

当引入AI对QGP形态进行分析和解构时,就必须要考虑其规范对称性 (Gauge Symmetry)

规范对称性是指用不同方法描述同一件事件,比如,我们可以用一对相位和电磁场势描述一个电子-光子系统,也可以用另外一对来描述,这两个描述应该给出同一个物理实质。

而物理量都是规范不变的,因此,看上去用不同的数学方式描述的粒子场及其相互作用力,或许实际上就是相同的物理状态。

传统CNN很难计算或分析这些规范不变量,自然就无法得到有意义的计算机模拟结果。

而开头提到的新方法L-CNN全名格点规范等变(Lattice Gauge Equivariant)神经网络,是一种全新的,可以对传统CNN无法处理的规范不变量进行计算或分析的方法。

整个方法是基于格点规范场论 (Lattice gauge theory)实现的。

在格点上,规范不变量通常是以不同形状的威尔逊环 (Wilson Loop)来进行描述。

具体的,加入一个新的卷积层,能在连续的双线性层中形成任意形状的威尔逊环,同时保留规范等价性(Gauge Equivariance)

而所有可收缩的威尔逊环的集合都可以通过上述方法生成,再加上来自非收缩环路的拓扑信息,原则上就可以重构所有的规范连接

有了这样的神经网络,就有可能对多个物理学的复杂系统进行预测。

论文作者Andreas Ipp还用夸克胶子等离子体举了个例子:

比如,L-CNN不用详细计算每一个中间步骤,就能估计夸克胶子等离子体在以后某个时间点的样子。

同时,它也能确保系统只产生与规范对称不矛盾的结果,也就是至少在原则上有意义的结果。

这是以前所有的计算方法都很难做到的,L-CNN无疑为模拟复杂物理现象提供了一种新思路。

未来,它还会为探索生命体最初瞬间存在的环境、理解宇宙中物质的本源状态,以及黑洞、大统一理论的研究提供更多的帮助。

作者介绍

论文共有四位作者,都来自维也纳科技大学(TU Wien)的理论物理研究所。

其中右下角为论文的通讯作者David I. Müller,为维也纳科技大学理论物理研究所的博士后,主要研究领域为高能物理学、格点规范场、机器学习。

论文:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.032003

参考链接:
https://www.eurekalert.org/news-releases/941106

「智能汽车」交流群招募中!

欢迎关注智能汽车、自动驾驶的小伙伴们加入社群,与行业大咖交流、切磋,不错过智能汽车行业发展&技术进展。

ps.加好友请务必备注您的姓名-公司-职位哦~


点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~


登录查看更多
1

相关内容

在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。基于它们的共享权重架构和平移不变性特征,它们也被称为位移不变或空间不变的人工神经网络(SIANN)。它们在图像和视频识别,推荐系统,图像分类,医学图像分析,自然语言处理,和财务时间序列中都有应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【NeurIPS 2021】流形上的注意力机制:规范等变的Transformer
专知会员服务
23+阅读 · 2021年8月1日
重磅!几何深度学习 新书,160页pdf阐述
专知会员服务
259+阅读 · 2021年4月29日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
一文综述经典的深度文本分类方法
AI100
12+阅读 · 2019年6月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
17+阅读 · 2021年3月29日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员