Decreasing projection views to lower X-ray radiation dose usually leads to severe streak artifacts. To improve image quality from sparse-view data, a Multi-domain Integrative Swin Transformer network (MIST-net) was developed in this article. First, MIST-net incorporated lavish domain features from data, residual-data, image, and residual-image using flexible network architectures, where residual-data and residual-image sub-network was considered as data consistency module to eliminate interpolation and reconstruction errors. Second, a trainable edge enhancement filter was incorporated to detect and protect image edges. Third, a high-quality reconstruction Swin transformer (i.e., Recformer) was designed to capture image global features. The experiment results on numerical and real cardiac clinical datasets with 48-views demonstrated that our proposed MIST-net provided better image quality with more small features and sharp edges than other competitors.
翻译:首先,MIST-net利用灵活的网络结构,将数据、残余数据、图像和残余图像的图像集成成成像作为数据一致性模块,以消除内插和重建错误,通常会导致严重的痕量文物。第二,为了从稀少的视图数据中提高图像质量,在本篇文章中开发了一个多域综合整形双变形器网络(MIST-net ) 。第一,MIST-net利用灵活的网络结构,将数据、残余数据、图像和残余图像成像子网络的数据、残余数据和剩余图像子网络作为数据一致性模块,作为消除内插和重建错误。第二,为探测和保护图像边缘,引入了一个可训练的边缘增强过滤器。第三,设计了一个高质量的重建双向变形器(即Recext),以捕捉全球特征。关于48视图的数字和真实心脏临床数据集的实验结果表明,我们提议的MIST-net提供了比其他竞争者更小的特征和尖锐边缘更好的图像质量。