这本书的目的是全面概述在算法的数学分析中使用的主要技术。涵盖的材料从经典的数学主题,包括离散数学,基本的真实分析,和组合学,以及从经典的计算机科学主题,包括算法和数据结构。重点是“平均情况”或“概率”分析,但也涵盖了“最坏情况”或“复杂性”分析所需的基本数学工具。我们假设读者对计算机科学和实际分析的基本概念有一定的熟悉。简而言之,读者应该既能写程序,又能证明定理。否则,这本书是自成一体的。

这本书是用来作为算法分析高级课程的教科书。它也可以用于计算机科学家的离散数学课程,因为它涵盖了离散数学的基本技术,以及组合学和重要的离散结构的基本性质,在计算机科学学生熟悉的背景下。传统的做法是在这类课程中有更广泛的覆盖面,但许多教师可能会发现,这里的方法是一种有用的方式,可以让学生参与到大量的材料中。这本书也可以用来向数学和应用数学的学生介绍与算法和数据结构相关的计算机科学原理。

尽管有大量关于算法数学分析的文献,但该领域的学生和研究人员尚未直接获得广泛使用的方法和模型的基本信息。本书旨在解决这种情况,汇集了大量的材料,旨在为读者提供该领域的挑战的欣赏和学习正在开发的先进工具以应对这些挑战所需的背景知识。补充的论文从文献,这本书可以作为基础的介绍性研究生课程的算法分析,或作为一个参考或基础的研究人员在数学或计算机科学谁想要获得这个领域的文献自学。

成为VIP会员查看完整内容
0
38

相关内容

https://www.worldscientific.com/page/pressroom/2018-07-31-01

这本书提供了一个机器学习和数据挖掘领域的数学分析。典型的计算机科学数学课程的数学分析部分省略了这些非常重要的思想和技术,这些思想和技术对于机器学习的专门领域是不可缺少的,以优化为中心,如支持向量机,神经网络,各种类型的回归,特征选择和聚类。本书适用于研究者和研究生,他们将从书中讨论的这些应用领域获益。

数学分析可以被松散地描述为数学的一个领域,其主要对象是研究函数及其关于极限的行为。术语“函数”指的是实参数实函数的广义集合,包括函数、运算符、测度等。在数学分析中,有几个发展良好的领域对机器学习产生了特殊的兴趣:拓扑(具有不同的风格:点集拓扑、组合拓扑和代数拓扑),赋范和内积空间的泛函分析(包括巴拿赫和希尔伯特空间),凸分析,优化,等等。此外,像测量和集成理论这样的学科在统计学中发挥着至关重要的作用,这是机器学习的另一个支柱,在计算机科学家的教育中缺乏。我们的目标是为缩小这一差距做出贡献,这是对研究感兴趣的人的一个严重障碍。机器学习和数据挖掘文献非常广泛,包括各种各样的方法,从非正式的到复杂的数学展示。然而,接近研究主题所需要的必要的数学背景通常以一种简洁和无动机的方式呈现,或者干脆就不存在。本卷机器学习的通常介绍,并提供(通过其应用章节,讨论优化,迭代算法,神经网络,回归,和支持向量机)的数学方面的研究。

成为VIP会员查看完整内容
0
64

《量子信息理论》这本书基本上是自成体系的,主要关注构成这门学科基础的基本事实的精确数学公式和证明。它是为研究生和研究人员在数学,计算机科学,理论物理学寻求发展一个全面的理解关键结果,证明技术,和方法,与量子信息和计算理论的广泛研究主题相关。本书对基础数学,包括线性代数,数学分析和概率论有一定的理解。第一章总结了这些必要的数学先决条件,并从这个基础开始,这本书包括清晰和完整的证明它提出的所有结果。接下来的每一章都包含了具有挑战性的练习,旨在帮助读者发展自己的技能,发现关于量子信息理论的证明。

这是一本关于量子信息的数学理论的书,专注于定义、定理和证明的正式介绍。它主要是为对量子信息和计算有一定了解的研究生和研究人员准备的,比如将在本科生或研究生的入门课程中涵盖,或在目前存在的关于该主题的几本书中的一本中。量子信息科学近年来有了爆炸性的发展,特别是在过去的二十年里。对这个问题的全面处理,即使局限于理论方面,也肯定需要一系列的书,而不仅仅是一本书。与这一事实相一致的是,本文所涉及的主题的选择并不打算完全代表该主题。量子纠错和容错,量子算法和复杂性理论,量子密码学,和拓扑量子计算是在量子信息科学的理论分支中发现的许多有趣的和基本的主题,在这本书中没有涵盖。然而,当学习这些主题时,人们很可能会遇到本书中讨论的一些核心数学概念。

https://www.cambridge.org/core/books/theory-of-quantum-information/AE4AA5638F808D2CFEB070C55431D897#fndtn-information

成为VIP会员查看完整内容
0
46

图论因其在计算机科学、通信网络和组合优化方面的应用而成为一门重要的学科。它与其他数学领域的互动也越来越多。虽然这本书可以很好地作为图表理论中许多最重要的主题的参考,但它甚至正好满足了成为一本有效的教科书的期望。主要关注的是服务于计算机科学、应用数学和运筹学专业的学生,确保满足他们对算法的需求。在材料的选择和介绍方面,已试图在基本的基础上容纳基本概念,以便对那些刚进入这一领域的人提供指导。此外,由于它既强调定理的证明,也强调应用,所以应该先吸收主题,然后对主题的深度和方法有一个印象。本书是一篇关于图论的综合性文章,主题是有组织的、系统的。这本书在理论和应用之间取得了平衡。这本书以这样一种方式组织,主题出现在完美的顺序,以便于学生充分理解主题。这些理论已经用简单明了的数学语言进行了描述。这本书各方面都很完整。它将为主题提供一个完美的开端,对主题的完美理解,以及正确的解决方案的呈现。本书的基本特点是,概念已经用简单的术语提出,并详细解释了解决过程。

这本书有10章。每一章由紧凑但彻底的理论、原则和方法的基本讨论组成,然后通过示例进行应用。本书所介绍的所有理论和算法都通过大量的算例加以说明。这本书在理论和应用之间取得了平衡。第一章介绍图。第一章描述了同构、完全图、二部图和正则图的基本和初等定义。第二章介绍了不同类型的子图和超图。本章包括图形运算。第二章还介绍了步行、小径、路径、循环和连通或不连通图的基本定义。第三章详细讨论了欧拉图和哈密顿图。第四章讨论树、二叉树和生成树。本章深入探讨了基本电路和基本割集的讨论。第五章涉及提出各种重要的算法,在数学和计算机科学中是有用的。第六章的数学前提包括线性代数的第一个基础。矩阵关联、邻接和电路在应用科学和工程中有着广泛的应用。第七章对于讨论割集、割顶点和图的连通性特别重要。第八章介绍了图的着色及其相关定理。第九章着重介绍了平面图的基本思想和有关定理。最后,第十章给出了网络流的基本定义和定理。

成为VIP会员查看完整内容
0
71

高维概率提供了对随机向量、随机矩阵、随机子空间和用于量化高维不确定性的对象的行为的洞察。借鉴了概率、分析和几何的思想,它适用于数学、统计学、理论计算机科学、信号处理、优化等领域。它是第一个将高维概率的理论、关键工具和现代应用集成起来的。集中不等式是其核心,它涵盖了Hoeffding和Chernoff等经典不等式和Bernstein等现代发展。然后介绍了基于随机过程的强大方法,包括Slepian的、Sudakov的和Dudley的不等式,以及基于VC维的泛链和界。整本书包含了大量的插图,包括经典和现代的协方差估计、聚类、网络、半定规划、编码、降维、矩阵补全、机器学习、压缩感知和稀疏回归等结果。

这是一本教科书在高维概率与数据科学的应用展望。它是为博士和高级硕士学生和数学,统计,电子工程,计算机科学,计算生物学和相关领域的初级研究人员,谁正在寻求扩大他们的理论方法在现代研究数据科学的知识。

成为VIP会员查看完整内容
0
29

《数据科学设计手册》提供了实用的见解,突出了分析数据中真正重要的东西,并提供了如何使用这些核心概念的直观理解。这本书没有强调任何特定的编程语言或数据分析工具套件,而是专注于重要设计原则的高级讨论。这个易于阅读的文本理想地服务于本科生和早期研究生的需要,开始“数据科学入门”课程。它揭示了这门学科是如何以其独特的分量和特点,处于统计学、计算机科学和机器学习的交叉领域。在这些和相关领域的从业者会发现这本书完美的自学以及。

《数据科学设计手册》是数据科学的介绍,重点介绍建立收集、分析和解释数据的系统所需的技能和原则。作为一门学科,数据科学位于统计学、计算机科学和机器学习的交汇处,但它正在构建自己独特的分量和特征。

这本书涵盖了足够的材料在本科或早期研究生水平的“数据科学入门”课程。在这里可以找到教学这门课程的全套讲课幻灯片,以及项目和作业的数据资源,以及在线视频讲座。

成为VIP会员查看完整内容
0
47

在过去的二十年里,机器学习已经成为信息技术的支柱之一,并因此成为我们生活中相当核心(尽管通常是隐藏的)的一部分。随着可用数据量的不断增加,我们有充分的理由相信,智能数据分析将变得更加普遍,成为技术进步的必要因素。本章的目的是为读者提供一个广泛的应用的概述,这些应用的核心是一个机器学习问题,并给这一大堆问题带来一定程度的秩序。在那之后,我们将讨论一些来自统计和概率论的基本工具,因为它们构成了许多机器学习问题必须被表述成易于解决的语言。最后,我们将概述一套相当基本但有效的算法来解决一个重要的问题,即分类。更复杂的工具,更普遍的问题的讨论和详细的分析将在本书后面的部分。

成为VIP会员查看完整内容
0
37

本书致力于概率信息测度理论及其在信息源和噪声信道编码定理中的应用。最终的目标是全面发展香农的通信数学理论,但大部分篇幅都用于证明香农编码定理所需的工具和方法。这些工具形成了遍历理论和信息论的共同领域,并包含了随机变量、随机过程和动力系统中的信息的几个定量概念。例如熵、互信息、条件熵、条件信息和相对熵(鉴别、Kullback-Leibler信息),以及这些量的极限标准化版本,如熵率和信息率。在考虑多个随机对象时,除了考虑信息之外,我们还会考虑随机对象之间的距离或变形,即一个随机对象被另一个随机对象表示的准确性。书的大部分与这些量的性质有关,特别是平均信息和扭曲的长期渐近行为,其中两个样本平均数和概率平均数是有兴趣的。

成为VIP会员查看完整内容
0
60

自Goodfellow等人2014年开创性的工作以来,生成式对抗网(GAN)就受到了相当多的关注。这种关注导致了GANs的新思想、新技术和新应用的爆炸。为了更好地理解GANs,我们需要理解其背后的数学基础。本文试图从数学的角度对GANs进行概述。许多学数学的学生可能会发现关于GAN的论文更难以完全理解,因为大多数论文是从计算机科学和工程师的角度写的。这篇论文的目的是用他们更熟悉的语言来介绍GANs。

成为VIP会员查看完整内容
0
52

越来越多来自不同领域的计算机科学家使用离散数学结构来解释概念和问题。在教学经验的基础上,作者提供了一个容易理解的文本,强调了离散数学的基础及其高级课题。这篇文章展示了如何用清晰的数学语言表达精确的思想。学生发现离散数学在描述计算机科学结构和解决问题方面的重要性。他们还学习如何掌握离散数学将帮助他们发展重要的推理技能,这些技能将在他们的职业生涯中继续发挥作用。

成为VIP会员查看完整内容
0
77

本备忘单是机器学习手册的浓缩版,包含了许多关于机器学习的经典方程和图表,旨在帮助您快速回忆起机器学习中的知识和思想。

这个备忘单有两个显著的优点:

  1. 清晰的符号。数学公式使用了许多令人困惑的符号。例如,X可以是一个集合,一个随机变量,或者一个矩阵。这是非常混乱的,使读者很难理解数学公式的意义。本备忘单试图规范符号的使用,所有符号都有明确的预先定义,请参见小节。

  2. 更少的思维跳跃。在许多机器学习的书籍中,作者省略了数学证明过程中的一些中间步骤,这可能会节省一些空间,但是会给读者理解这个公式带来困难,读者会在中间迷失。

成为VIP会员查看完整内容
0
191
小贴士
相关VIP内容
专知会员服务
46+阅读 · 8月4日
专知会员服务
71+阅读 · 8月2日
专知会员服务
29+阅读 · 6月17日
专知会员服务
47+阅读 · 4月27日
专知会员服务
37+阅读 · 4月20日
专知会员服务
60+阅读 · 3月23日
专知会员服务
52+阅读 · 2020年9月3日
专知会员服务
77+阅读 · 2020年8月31日
机器学习速查手册,135页pdf
专知会员服务
191+阅读 · 2020年3月15日
相关论文
Şeymanur Aktı,Doğay Kamar,Özgür Anıl Özlü,Ihsan Soydemir,Muhammet Akcan,Abdullah Kul,Islem Rekik
0+阅读 · 9月16日
Jialin Ji,Neng Pan,Chao Xu,Fei Gao
0+阅读 · 9月15日
Optimization for deep learning: theory and algorithms
Ruoyu Sun
80+阅读 · 2019年12月19日
Joseph Y. Halpern
5+阅读 · 2019年9月30日
Joint Face Detection and Facial Motion Retargeting for Multiple Faces
Bindita Chaudhuri,Noranart Vesdapunt,Baoyuan Wang
4+阅读 · 2019年2月27日
Shuai Zhang,Lina Yao,Aixin Sun,Sen Wang,Guodong Long,Manqing Dong
5+阅读 · 2018年6月3日
Yishu Miao,Edward Grefenstette,Phil Blunsom
8+阅读 · 2018年5月21日
Behnaz Nojavanasghari,Yuchi Huang,Saad Khan
4+阅读 · 2018年1月30日
Afroze Ibrahim Baqapuri
3+阅读 · 2015年9月14日
Bryan Perozzi,Rami Al-Rfou,Steven Skiena
7+阅读 · 2014年6月27日
Top