这本书的目的是全面概述在算法的数学分析中使用的主要技术。涵盖的材料从经典的数学主题,包括离散数学,基本的真实分析,和组合学,以及从经典的计算机科学主题,包括算法和数据结构。重点是“平均情况”或“概率”分析,但也涵盖了“最坏情况”或“复杂性”分析所需的基本数学工具。我们假设读者对计算机科学和实际分析的基本概念有一定的熟悉。简而言之,读者应该既能写程序,又能证明定理。否则,这本书是自成一体的。

这本书是用来作为算法分析高级课程的教科书。它也可以用于计算机科学家的离散数学课程,因为它涵盖了离散数学的基本技术,以及组合学和重要的离散结构的基本性质,在计算机科学学生熟悉的背景下。传统的做法是在这类课程中有更广泛的覆盖面,但许多教师可能会发现,这里的方法是一种有用的方式,可以让学生参与到大量的材料中。这本书也可以用来向数学和应用数学的学生介绍与算法和数据结构相关的计算机科学原理。

尽管有大量关于算法数学分析的文献,但该领域的学生和研究人员尚未直接获得广泛使用的方法和模型的基本信息。本书旨在解决这种情况,汇集了大量的材料,旨在为读者提供该领域的挑战的欣赏和学习正在开发的先进工具以应对这些挑战所需的背景知识。补充的论文从文献,这本书可以作为基础的介绍性研究生课程的算法分析,或作为一个参考或基础的研究人员在数学或计算机科学谁想要获得这个领域的文献自学。

成为VIP会员查看完整内容
0
65

相关内容

在过去的十年里,人们对人工智能和机器学习的兴趣有了相当大的增长。从最广泛的意义上说,这些领域旨在“学习一些有用的东西”,了解生物体所处的环境。如何处理收集到的信息导致了算法的发展——如何处理高维数据和处理不确定性。在机器学习和相关领域的早期研究阶段,类似的技术在相对孤立的研究社区中被发现。虽然不是所有的技术都有概率论的自然描述,但许多都有,它是图模型的框架(图和概率论的结合),使从统计物理、统计、机器学习和信息理论的想法的理解和转移。在这种程度上,现在有理由期待机器学习研究人员熟悉统计建模技术的基础知识。这本书集中在信息处理和机器学习的概率方面。当然,没有人说这种方法是正确的,也没有人说这是唯一有用的方法。事实上,有人可能会反驳说,这是没有必要的,因为“生物有机体不使用概率论”。无论情况是否如此,不可否认的是,图模型和概率框架帮助机器学习领域出现了新算法和模型的爆炸式增长。我们还应该清楚,贝叶斯观点并不是描述机器学习和信息处理的唯一方法。贝叶斯和概率技术在需要考虑不确定性的领域中发挥了自己的作用。

http://www0.cs.ucl.ac.uk/staff/d.barber/brml/

本书结构

本书第一部分的目的之一是鼓励计算机科学专业的学生进入这一领域。许多现代学生面临的一个特别困难是有限的正规微积分和线性代数训练,这意味着连续和高维分布的细节可能会让他们离开。在以概率作为推理系统的一种形式开始时,我们希望向读者展示他们可能更熟悉的逻辑推理和动态规划的想法如何在概率环境中有自然的相似之处。特别是,计算机科学的学生熟悉的概念,算法为核心。然而,在机器学习中更常见的做法是将模型视为核心,而如何实现则是次要的。从这个角度来看,理解如何将一个数学模型转换成一段计算机代码是核心。

第二部分介绍了理解连续分布所需的统计背景,以及如何从概率框架来看待学习。第三部分讨论机器学习的主题。当然,当一些读者看到他们最喜欢的统计话题被列在机器学习下面时,他们会感到惊讶。统计学和机器学习之间的一个不同观点是,我们最终希望构建什么样的系统(能够完成“人类/生物信息处理任务的机器),而不是某些技术。因此,我认为这本书的这一部分对机器学习者来说是有用的。第四部分讨论了明确考虑时间的动态模型。特别是卡尔曼滤波器被视为图模型的一种形式,这有助于强调模型是什么,而不是像工程文献中更传统的那样把它作为一个“过滤器”。第五部分简要介绍了近似推理技术,包括随机(蒙特卡罗)和确定性(变分)技术。

成为VIP会员查看完整内容
0
62

这本书的第三版继续演示如何应用概率论,以获得洞察到真实的,日常统计问题和情况。这种方法最终导致了对统计程序和策略的直观理解,最常用的是实践工程师和科学家。这本书是为统计学或概率和统计的入门课程而写的,为工程、计算机科学、数学、统计学和自然科学的学生而写。因此,它假定你有初等微积分知识。

第一章简要介绍统计学,介绍它的两个分支,描述性统计和推理统计学,并简要介绍该学科的历史和一些人的早期工作为今天所做的工作奠定了基础。描述性统计的主题将在第二章中讨论。描述数据集的图和表在本章中给出,以及用于总结数据集某些关键属性的数量。要想从数据中得出结论,就必须了解数据的来源。例如,通常假设数据是来自某些总体的“随机样本”。为了准确理解这意味着什么,以及将样本数据属性与总体属性相关联的结果是什么,有必要对概率有一些了解,这是第三章的主题。本章介绍了概率实验的思想,解释了事件概率的概念,并给出了概率的公理。我们的概率研究将在第四章继续,这一章涉及随机变量和期望的重要概念,在第五章,考虑一些在应用中经常出现的特殊类型的随机变量。给出了二项式、泊松、超几何、正态、均匀、伽马、卡方、t和F等随机变量。在第6章中,我们研究了样本均值和样本方差等抽样统计量的概率分布。我们将展示如何使用一个著名的概率理论结果,即中心极限定理,来近似样本均值的概率分布。此外,我们还介绍了关节基础数据来自正态分布总体的重要特殊情况下的样本均值和样本方差的概率分布。第7章展示了如何使用数据来估计感兴趣的参数。第8章介绍了统计假设检验的重要主题,它涉及到使用数据来检验特定假设的可信性。第9章讨论回归的重要课题。简单线性回归(包括回归到均值、残差分析和加权最小二乘等子主题)和多元线性回归都被考虑在内。第10章是方差分析。考虑了单向和双向(有或没有交互的可能性)问题。第11章是关于拟合优度检验,它可以用来检验所提出的模型是否与数据一致。文中给出了经典的卡方拟合优度检验,并将其应用于列联表的独立性检验。本章的最后一节介绍了Kolmogorov-Smirnov程序,用于测试数据是否来自特定的连续概率分布。第12章讨论了非参数假设检验,当人们无法假设潜在的分布具有某些特定的参数形式(如正态分布)时,可以使用非参数假设检验。第13章考虑质量控制的主题,一个关键的统计技术在制造和生产过程。我们考虑了各种控制图,不仅包括休哈特控制图,还包括基于移动平均线和累积总和的更复杂的控制图。第14章讨论与寿命试验有关的问题。在本章中,指数分布,而不是正态分布,起着关键作用。

成为VIP会员查看完整内容
0
43

https://www.worldscientific.com/page/pressroom/2018-07-31-01

这本书提供了一个机器学习和数据挖掘领域的数学分析。典型的计算机科学数学课程的数学分析部分省略了这些非常重要的思想和技术,这些思想和技术对于机器学习的专门领域是不可缺少的,以优化为中心,如支持向量机,神经网络,各种类型的回归,特征选择和聚类。本书适用于研究者和研究生,他们将从书中讨论的这些应用领域获益。

数学分析可以被松散地描述为数学的一个领域,其主要对象是研究函数及其关于极限的行为。术语“函数”指的是实参数实函数的广义集合,包括函数、运算符、测度等。在数学分析中,有几个发展良好的领域对机器学习产生了特殊的兴趣:拓扑(具有不同的风格:点集拓扑、组合拓扑和代数拓扑),赋范和内积空间的泛函分析(包括巴拿赫和希尔伯特空间),凸分析,优化,等等。此外,像测量和集成理论这样的学科在统计学中发挥着至关重要的作用,这是机器学习的另一个支柱,在计算机科学家的教育中缺乏。我们的目标是为缩小这一差距做出贡献,这是对研究感兴趣的人的一个严重障碍。机器学习和数据挖掘文献非常广泛,包括各种各样的方法,从非正式的到复杂的数学展示。然而,接近研究主题所需要的必要的数学背景通常以一种简洁和无动机的方式呈现,或者干脆就不存在。本卷机器学习的通常介绍,并提供(通过其应用章节,讨论优化,迭代算法,神经网络,回归,和支持向量机)的数学方面的研究。

成为VIP会员查看完整内容
0
100

大量大维度数据是现代机器学习(ML)的默认设置。标准的ML算法,从支持向量机这样的内核方法和基于图的方法(如PageRank算法)开始,最初的设计是基于小维度的,在处理真实世界的大数据集时,即使不是完全崩溃的话,往往会表现失常。随机矩阵理论最近提出了一系列广泛的工具来帮助理解这种新的维数诅咒,帮助修复或完全重建次优算法,最重要的是提供了处理现代数据挖掘的新方向。本编著的主要目的是提供这些直觉,通过提供一个最近的理论和应用突破的随机矩阵理论到机器学习摘要。针对广泛的受众,从对统计学习感兴趣的本科生到人工智能工程师和研究人员,这本书的数学先决条件是最小的(概率论、线性代数和真实和复杂分析的基础是足够的):与随机矩阵理论和大维度统计的数学文献中的介绍性书籍不同,这里的理论重点仅限于机器学习应用的基本要求。这些应用范围从检测、统计推断和估计,到基于图和核的监督、半监督和非监督分类,以及神经网络: 为此,本文提供了对算法性能的精确理论预测(在不采用随机矩阵分析时往往难以实现)、大维度的洞察力、改进方法,以及对这些方法广泛适用于真实数据的基本论证。该专著中提出的大多数方法、算法和图形都是用MATLAB和Python编写的,读者可以查阅(https://github.com/Zhenyu-LIAO/RMT4ML)。本专著也包含一系列练习两种类型:短的练习与修正附加到书的最后让读者熟悉随机矩阵的基本理论概念和工具分析,以及长期指导练习应用这些工具进一步具体的机器学习应用程序。

https://zhenyu-liao.github.io/book/

成为VIP会员查看完整内容
0
60

《量子信息理论》这本书基本上是自成体系的,主要关注构成这门学科基础的基本事实的精确数学公式和证明。它是为研究生和研究人员在数学,计算机科学,理论物理学寻求发展一个全面的理解关键结果,证明技术,和方法,与量子信息和计算理论的广泛研究主题相关。本书对基础数学,包括线性代数,数学分析和概率论有一定的理解。第一章总结了这些必要的数学先决条件,并从这个基础开始,这本书包括清晰和完整的证明它提出的所有结果。接下来的每一章都包含了具有挑战性的练习,旨在帮助读者发展自己的技能,发现关于量子信息理论的证明。

这是一本关于量子信息的数学理论的书,专注于定义、定理和证明的正式介绍。它主要是为对量子信息和计算有一定了解的研究生和研究人员准备的,比如将在本科生或研究生的入门课程中涵盖,或在目前存在的关于该主题的几本书中的一本中。量子信息科学近年来有了爆炸性的发展,特别是在过去的二十年里。对这个问题的全面处理,即使局限于理论方面,也肯定需要一系列的书,而不仅仅是一本书。与这一事实相一致的是,本文所涉及的主题的选择并不打算完全代表该主题。量子纠错和容错,量子算法和复杂性理论,量子密码学,和拓扑量子计算是在量子信息科学的理论分支中发现的许多有趣的和基本的主题,在这本书中没有涵盖。然而,当学习这些主题时,人们很可能会遇到本书中讨论的一些核心数学概念。

https://www.cambridge.org/core/books/theory-of-quantum-information/AE4AA5638F808D2CFEB070C55431D897#fndtn-information

成为VIP会员查看完整内容
0
58

我的目标是撰写一本既可以作为教程又能够参考的书。这本书最初是为我在Mount St. Mary大学的编程入门课上的学生准备的大约30页笔记。这些学生中大多数没有编程经验,这促使我改进方法。我省略了很多技术细节,有时我过度简化了事情。其中一些细节在书的后面被补充,尽管其他细节从未被补充。但是这本书并不打算涵盖所有内容,我推荐阅读其他书籍和Python文档来填补这些空白。

这本书第一部分的大部分内容都是基础。前四章非常重要。第五章是有用的,但不是所有的都是关键的。第6章(字符串)应该在第7章(列表)之前完成。第8章包含一些更高级的列表主题。虽然这些内容都很有趣,也很有用,但大部分内容都可以跳过。特别是,那一章涵盖了列表理解,我在书中后面会大量使用。虽然您可以不使用列表理解,但它们提供了一种优雅而有效的做事方式。第9章(while循环)很重要。第10章包含了各种各样的主题,它们都很有用,但是如果需要的话,可以跳过很多。第一部分的最后四章是关于字典、文本文件、函数和面向对象编程的。

第二部分是关于图形的,主要是用Tkinter进行GUI编程。您可以很快地使用Tkinter编写一些很好的程序。例如,第15.7节呈现了一款20行的井字游戏。第二部分的最后一章介绍了一些关于Python图像库的内容。

第三部分包含了许多您可以用Python做的有趣的事情。如果你要围绕这本书组织一个学期的课程,你可能想在第三部分中选择一些主题来复习。这本书的这一部分也可以作为一个参考或作为一个地方,有兴趣和积极的学生学习更多。书中这一部分的所有主题都是我在某一点或另一点上发现有用的东西。虽然这本书是为入门编程课程而设计的,但是对于那些有编程经验想要学习Python的人来说,这本书也很有用。如果你是这些人中的一员,你应该能够轻松地读完前几章。您应该发现,第2部分对GUI编程进行了简明而非肤浅的论述。第三部分包含了关于Python特性的信息,这些特性允许您用很少的代码完成大任务。

成为VIP会员查看完整内容
0
49

本书是信息论领域中一本简明易懂的教材。主要内容包括:熵、信源、信道容量、率失真、数据压缩与编码理论和复杂度理论等方面的介绍。

本书还对网络信息论和假设检验等进行了介绍,并且以赛马模型为出发点,将对证券市场研究纳入了信息论的框架,从新的视角给投资组合的研究带来了全新的投资理念和研究技巧。

本书适合作为电子工程、统计学以及电信方面的高年级本科生和研究生的信息论基础教程教材,也可供研究人员和专业人士参考。

本书是一本简明易懂的信息论教材。正如爱因斯坦所说:“凡事应该尽可能使其简单到不能再简单为止。''虽然我们没有深人考证过该引语的来源(据说最初是在幸运蛋卷中发现的),但我们自始至终都将这种观点贯穿到本书的写作中。信息论中的确有这样一些关键的思想和技巧,一旦掌握了它们、不仅使信息论的主题简明,而且在处理新问題时提供重要的直觉。本书来自使用了十多年的信息论讲义,原讲义是信息论课程的高年级本科生和一年级研究生两学期用的教材。本书打算作为通信理论.计算机科学和统计学专业学生学习信息论的教材。

信息论中有两个简明要点。第一,熵与互信息这样的特殊量是为了解答基本问题而产生的。例如,熵是随机变量的最小描述复杂度,互信息是度量在噪声背景下的通信速率。另外,我们在以后还会提到,互信息相当于已知边信息条件下财富双倍的增长。第二,回答信息理论问邀的答案具有自然的代数结构。例如,熵具有链式法则,因而,谪和互信息也是相关的。因此,数据压缩和通信中的问题得到广泛的解释。我们都有这样的感受,当研究某个问题时,往往历经大量的代数运算推理得到了结果,但此时没有真正了解问题的全莪,最终是通过反复观察结果,才对整个问题有完整、明确的认识。所以,对一个问题的全面理解,不是靠推理,而是靠对结果的观察。要更具体地说明这一点,物理学中的牛顿三大定律和薛定谔波动方程也许是最合适的例子。谁曾预见过薛定谔波动方程后来会有如此令人敬畏的哲学解释呢?

在本书中,我们常会在着眼于问题之前,先了解一下答案的性质。比如第2章中,我们定义熵、相对熵和互信息,研究它们之间的关系,再对这些关系作一点解释·由此揭示如何融会贯通地使用各式各样的方法解决实际问题。同理,我们顺便探讨热力学第二定律的含义。熵总是增加吗?答案既肯定也否定。这种结果会令专家感兴趣,但初学者或i午认为这是必然的而不会深人考虑。

在实际教学中.教师往往会加人一自己的见解。事实上,寻找无人知道的证明或者有所创新的结果是一件很愉快的事情。如果有人将新的思想和已经证明的内容在课堂上讲解给学生,那么不仅学生会积极反馈“对,对,对六而且会大大地提升教授该课程的乐崆我们正是这样从研究本教材的许多新想法中获得乐趣的。

本书加人的新素材实例包括信息论与博弈之间的关系,马尔可夫链背景下热力学第二定律的普遍性问题,信道容量定理的联合典型性证明,赫夫曼码的竞争最优性,以及关于最大熵谱密度估计的伯格(回定理的证明。科尔莫戈罗夫复杂度这一章也是本书的独到之处。面将费希尔信息,互信息、中心极限定理以及布伦一闵可夫斯基不等式与熵幂不等式联系在一起,也是我们引以为豪之处。令我们感到惊讶的是.关于行列式不等式的许多经典结论,当利用信息论不等式后会很容易得到证明。

自从香农的奠基性论文面世以来,尽管信息论已有了相当大的发展,但我们还是要努力强调它的连贯性。虽然香农创立信息论时受到通信理论中的问题启发,然而我们认为信息论是一门独立的学科,可应用于通信理论和统计学中。我们将信息论作为一个学科领域从通信理论、概率论和统计学的背景中独立出来因为明显不可能从这些学科中获得难以理解的信息概念。由于本书中绝大多数结论以定理和证明的形式给出,所以,我们期望通过对这些定理的巧妙证明能说明这些结论的完美性。一般来讲,我们在介绍问题之前先描述回题的解的性质,而这些很有的性质会使接下来的证明顺理成章。

使用不等式串、中间不加任何文字、最后直接加以解释,是我们在表述方式上的一项创新希望读者学习我们所给的证明过程达到一定数量时,在没有任何解释的情况下就能理解其中的大部分步,并自己给出所需的解释这些不等式串好比模拟到试题,读者可以通过它们确认自己是否已掌握证明那些重要定理的必备知识。这些证明过程的自然流程是如此引人注目,以至于导致我们轻视了写作技巧中的某条重要原则。由于没有多余的话,因而突出了思路的逻辑性与主題思想u我们希望当读者阅读完本书后,能够与我们共同分亨我们所推崇的,具有优美、简洁和自然风格的信息论。

本书广泛使用弱的典型序列的方法,此概念可以追溯到香农1948年的创造性工作,而它真正得到发展是在20世纪70年代初期。其中的主要思想就是所谓的渐近均分性(AEP),或许可以粗略地说成“几乎一切事情都是等可能的"

第2章阐述了熵、相对熵和互信息之同的基本代数关系。渐近均分性是第3章重中之重的内容,这也使我们将随机过程和数据压缩的熵率分别放在第4章和第5章中论述。第6章介绍博弈,研究了数据压缩的对偶性和财富的增长率。可作为对信息论进行理性思考基础的科尔莫戈罗夫复杂度,拥有着巨大的成果,放在第14章中论述。我们的目标是寻找一个通用的最矩描述,而不是平均意义下的次佳描述。的确存在这样的普遍性概念用来刻画一个对象的复杂度。该章也论述了神奇数0,揭示数学上的不少奥秘,是图灵机停止运转概率的推广。第7章论述信道容量定理。第8章叙述微分熵的必需知识,它们是将早期容量定理推广到连续噪声信道的基础。基本的高斯信道容量问题在第9章中论述。第il章阐述信息论和统计学之间的关系,20世纪年代初期库尔贝克首次对此进行了研究,此后相对被忽视。由于率失真理论比无噪声数据压缩理论需要更多的背景知识,因而将其放置在正文中比较靠后的第10章。

网络信息理论是个大的主题,安排在第巧章,主要研究的是噪声和干扰存在情形下的同时可达的信息流。有许多新的思想在网络信息理论中开始活跃起来,其主要新要素有干扰和反馈第16章讲述股票市场,这是第6章所讨论的博弈的推广,也再次表明了信息论和博弈之间的紧密联系。第17章讲述信息论中的不等式,我们借此一隅把散布于全书中的有趣不等式重新收拢在一个新的框架中,再加上一些关于随机抽取子集熵率的有趣新不等式。集合和的体积的布伦一闵可夫斯基不等式,独立随机变量之和的有效方差的熵幂不等式以及费希尔信息不等式之间的美妙关系也将在此章中得到详尽的阐述。

本书力求推理严密,因此对数学的要求相当高·要求读者至少学过一学期的概率论课程且有扎实的数学背景,大致为本科高年级或研究生一年级水平。尽管如此,我们还是努力避免使用测度论。因为了解它只对第16章中的遍历过程的AEP的证明过程起到简化作用。这符合我们的观点,那就是信息论基础与技巧不同,后者才需要将所有推广都写进去。

本书的主体是第2,3,4,5,7,8,9,10,11和巧章,它们自成体系,读懂了它们就可以对信息论有很好的理解。但在我们看来,第14章的科尔莫戈罗夫复杂度是深人理解信息论所需的必备知识。余下的几章,从博弈到不等式.目的是使主题更加连贯和完美。

成为VIP会员查看完整内容
0
124

数据挖掘和机器学习的基本算法构成了数据科学的基础,利用自动化方法分析各种数据的模式和模型,应用范围从科学发现到商业分析。本教材面向本科和研究生课程,全面深入地介绍了数据挖掘、机器学习和统计学,为学生、研究人员和实践者提供了坚实的指导。这本书奠定了数据分析、模式挖掘、聚类、分类和回归的基础,集中在算法和潜在的代数、几何和概率概念上。新的第二版是一个完整的部分致力于回归方法,包括神经网络和深度学习。

  • 涵盖核心方法和前沿研究,包括深度学习

  • 提供了一种基于开源实现的算法方法

  • 包含了经过类测试的例子和练习,允许课程设计的灵活性和现成的参考

数据挖掘和机器学习使人能够从数据中获得基本的见解和知识。它们允许发现深刻的、有趣的和新颖的模式,以及从大规模数据中描述的、可理解的和可预测的模型。在这个领域有几本好书,但其中很多不是太高级就是太高级。这本书是一个介绍性的文本,奠定了机器学习和数据挖掘的基本概念和算法的基础。重要的概念在第一次遇到时就会被解释,并附有详细的步骤和推导。本书的主要目标是通过对数据和方法的几何、(线性)代数和概率解释的相互作用,建立公式背后的直觉。这第二版在回归上增加了一个完整的新部分,包括线性和逻辑回归,神经网络,和深度学习。其他章节的内容也进行了更新,已知的勘误表也得到了修正。本书的主要部分包括数据分析基础、频繁模式挖掘、聚类、分类和回归。这些课程涵盖了核心方法以及尖端主题,如深度学习、核方法、高维数据分析和图分析。

深度学习,核方法,高维数据分析,图分析。这本书包括许多例子来说明概念和算法。它也有结束语练习,在课堂上使用过。书中所有的算法都是由作者实现的。为了帮助实际理解,我们建议读者自己实现这些算法(例如,使用Python或R)。如幻灯片、数据集和视频等补充资源可以在该书的同伴站点在线获得:

http://dataminingbook.info

目录内容: Front Matter Contents Preface

PART I. DATA ANALYSIS FOUNDATIONS

1 Data Mining and Analysis 2 Numeric Attributes 3 Categorical Attributes 4 Graph Data 5 Kernel Methods 6 High-dimensional Data 7 Dimensionality Reduction

PART II. FREQUENT PATTERN MINING

8 Itemset Mining 9 Summarizing Itemsets 10 Sequence Mining 11 Graph Pattern Mining 12 Pattern and Rule Assessment

PART III. CLUSTERING

13 Representative-based Clustering 14 Hierarchical Clustering 15 Density-based Clustering 16 Spectral and Graph Clustering 17 Clustering Validation PART IV. CLASSIFICATION

18 Probabilistic Classification 19 Decision Tree Classifier 20 Linear Discriminant Analysis 21 Support Vector Machines 22 Classification Assessment

PART V. REGRESSION

23 Linear Regression 24 Logistic Regression 25 Neural Networks 26 Deep Learning 27 Regression Evaluation

Index

图片

成为VIP会员查看完整内容
0
81

如果您是用Python编程的新手,并且正在寻找可靠的介绍,那么这本书就是为您准备的。由计算机科学教师开发,在“为绝对初学者”系列丛书通过简单的游戏创造教授编程的原则。您将获得实际的Python编程应用程序所需的技能,并将了解如何在真实场景中使用这些技能。在整个章节中,你会发现一些代码示例来说明所提出的概念。在每一章的结尾,你会发现一个完整的游戏,展示了这一章的关键思想,一章的总结,以及一系列的挑战来测试你的新知识。当你读完这本书的时候,你将非常精通Python,并且能够将你所学到的基本编程原理应用到你要处理的下一种编程语言。

成为VIP会员查看完整内容
0
133

本备忘单是机器学习手册的浓缩版,包含了许多关于机器学习的经典方程和图表,旨在帮助您快速回忆起机器学习中的知识和思想。

这个备忘单有两个显著的优点:

  1. 清晰的符号。数学公式使用了许多令人困惑的符号。例如,X可以是一个集合,一个随机变量,或者一个矩阵。这是非常混乱的,使读者很难理解数学公式的意义。本备忘单试图规范符号的使用,所有符号都有明确的预先定义,请参见小节。

  2. 更少的思维跳跃。在许多机器学习的书籍中,作者省略了数学证明过程中的一些中间步骤,这可能会节省一些空间,但是会给读者理解这个公式带来困难,读者会在中间迷失。

成为VIP会员查看完整内容
0
209
小贴士
相关VIP内容
专知会员服务
62+阅读 · 10月8日
专知会员服务
43+阅读 · 10月6日
专知会员服务
60+阅读 · 8月12日
专知会员服务
58+阅读 · 8月4日
专知会员服务
49+阅读 · 7月10日
专知会员服务
124+阅读 · 3月22日
专知会员服务
133+阅读 · 2020年8月14日
机器学习速查手册,135页pdf
专知会员服务
209+阅读 · 2020年3月15日
相关论文
Jan-Willem van de Meent,Brooks Paige,Hongseok Yang,Frank Wood
0+阅读 · 10月19日
Matthew A. Fisher,Onur Teymur,Chris. J. Oates
0+阅读 · 10月15日
Loek Tonnaer,Luis A. Pérez Rey,Vlado Menkovski,Mike Holenderski,Jacobus W. Portegies
0+阅读 · 10月14日
Patrick Forré
0+阅读 · 9月14日
A Review of Graph Neural Networks and Their Applications in Power Systems
Wenlong Liao,Birgitte Bak-Jensen,Jayakrishnan Radhakrishna Pillai,Yuelong Wang,Yusen Wang
9+阅读 · 1月25日
Chongming Gao,Wenqiang Lei,Xiangnan He,Maarten de Rijke,Tat-Seng Chua
13+阅读 · 1月23日
Kamran Kowsari,Kiana Jafari Meimandi,Mojtaba Heidarysafa,Sanjana Mendu,Laura E. Barnes,Donald E. Brown
10+阅读 · 2020年5月20日
A Survey on Edge Intelligence
Dianlei Xu,Tong Li,Yong Li,Xiang Su,Sasu Tarkoma,Pan Hui
30+阅读 · 2020年3月26日
Joseph Y. Halpern
5+阅读 · 2019年9月30日
Akash Srivastava,Charles Sutton
6+阅读 · 2018年4月21日
Top