Electricity price forecasting is an essential task for all the deregulated markets of the world. The accurate prediction of the day-ahead electricity prices is an active research field and available data from various markets can be used as an input for forecasting. A collection of models have been proposed for this task, but the fundamental question on how to use the available big data is often neglected. In this paper, we propose to use transfer learning as a tool for utilizing information from other electricity price markets for forecasting. We pre-train a bidirectional Gated Recurrent Units (BGRU) network on source markets and finally do a fine-tuning for the target market. Moreover, we test different ways to use the input data from various markets in the models. Our experiments on five different day-ahead markets indicate that transfer learning improves the performance of electricity price forecasting in a statistically significant manner.
翻译:电力价格预测是全世界所有放松管制的市场的一项基本任务。准确预测日头电价是一个积极的研究领域,各种市场的现有数据可以用作预测的投入。已经为这项任务提出了一系列模型,但关于如何使用现有大数据的基本问题往往被忽视。在本文中,我们提议利用转让学习作为工具,利用其他电力价格市场的信息进行预测。我们预先在源市场对双向GRU经常单元网络进行了培训,并最终对目标市场进行了微调。此外,我们还试验了不同方法,利用不同市场的投入数据进行模型。我们在五个不同的日头市场的实验表明,转让学习以具有统计意义的方式改进了电价预测的绩效。