项目名称: 具有分数阶导数的随机非牛顿流方程(组)的数学研究

项目编号: No.11201475

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 郭春晓

作者单位: 中国矿业大学(北京)

项目金额: 22万元

中文摘要: 非牛顿流体力学反映了在给定温度和压强下应力与速度不再满足线性关系的流体运动。非牛顿流体在石油工业、生物工程、地质学及血液流变学等领域都有着广泛的应用。目前有关非牛顿流的研究成果主要集中在整数阶、确定性方程(或方程组),然而,由于随机偏微分方程和分数阶偏微分方程具有更鲜明的物理背景和研究前景,因此对于随机非牛顿流和具有分数阶导数的非牛顿流的研究具有重要的物理意义和现实意义。本项目主要研究随机非牛顿流及其相关方程组,拟通过偏微分方程经典理论结合随机分析和调和分析的方法解决以下问题:随机非牛顿流的无粘极限、分数阶Boussinesq Approximation模型(非牛顿流方程与温度方程构成的耦合方程组)解的适定性以及长时间行为、随机分数阶Boussinesq Approximation模型无穷维动力系统的长时间行为。本项目不仅具有主流性、前沿性,更具有广泛的应用前景。

中文关键词: 随机偏微分方程;分数阶偏微分方程;非牛顿流体;布森尼斯克近似;长时间行为

英文摘要: Non-Newtonian fluid mechanics reflect that constitutive equation of fluid between stress tensor and velocity no longer satisfy the linear relationship at given temperature and pressure. There is a wide range of applications in petroleum industry, biomechanics, geology, hemorheology, and so on. The main research results of non-Newtonian fluid concentrate on integer order deterministic equations. However, due to more distinct physical background and research prospects for stochastic PDE and fractional PDE. It has important physical and practical significance to study stochastic non-Newtonian fluid and non-Newtonian fluid with fractional derivative. This project mainly studies the stochastic non-Newtonian and correlation equations. We hope to solve the following issues through the classic theories of PDE, the method of random analysis and harmonic analysis : the inviscid limit of stochastic non-Newtonian;the well-posedness and the long time behavior of solution to fractional Boussinesq Approximation;the infinite dimensional dynamical system for stochastic fractional Boussinesq Approximation.This project not only has the mainstream, frontier, but also has more extensive application prospect.

英文关键词: stochastic PDE;fractional PDE;non-Newtonian fluid;Boussinesq Approximation;long time behavior

成为VIP会员查看完整内容
0

相关内容

【干货书】计算机科学家的数学,153页pdf
专知会员服务
170+阅读 · 2021年7月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
专知会员服务
43+阅读 · 2020年9月25日
专知会员服务
200+阅读 · 2020年9月1日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
酒鬼漫步的数学——随机过程 | 张天蓉专栏
知识分子
10+阅读 · 2017年8月13日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
小贴士
相关VIP内容
【干货书】计算机科学家的数学,153页pdf
专知会员服务
170+阅读 · 2021年7月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
专知会员服务
43+阅读 · 2020年9月25日
专知会员服务
200+阅读 · 2020年9月1日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
酒鬼漫步的数学——随机过程 | 张天蓉专栏
知识分子
10+阅读 · 2017年8月13日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员