The best neural architecture for a given machine learning problem depends on many factors: not only the complexity and structure of the dataset, but also on resource constraints including latency, compute, energy consumption, etc. Neural architecture search (NAS) for tabular datasets is an important but under-explored problem. Previous NAS algorithms designed for image search spaces incorporate resource constraints directly into the reinforcement learning rewards. In this paper, we argue that search spaces for tabular NAS pose considerable challenges for these existing reward-shaping methods, and propose a new reinforcement learning (RL) controller to address these challenges. Motivated by rejection sampling, when we sample candidate architectures during a search, we immediately discard any architecture that violates our resource constraints. We use a Monte-Carlo-based correction to our RL policy gradient update to account for this extra filtering step. Results on several tabular datasets show TabNAS, the proposed approach, efficiently finds high-quality models that satisfy the given resource constraints.
翻译:特定机器学习问题的最佳神经结构取决于许多因素:不仅数据集的复杂性和结构,而且还取决于资源限制,包括隐蔽性、计算、能源消耗等。 神经结构搜索(NAS)对于表格数据集来说是一个重要但探索不足的问题。 先前为图像搜索空间设计的NAS算法将资源限制直接纳入了强化学习奖励。 在本文中,我们认为,表格NAS的搜索空间对这些现有的奖赏划分方法提出了相当大的挑战,并提出了新的强化学习控制器来应对这些挑战。 受拒绝抽样的激励,当我们在搜索中抽取候选架构时,我们立即抛弃任何违反我们资源限制的架构。我们用蒙特-卡洛对我们的RL政策梯度更新来计算这一额外的过滤步骤。 几个表格数据集的结果显示 TabNAS, 即拟议方法, 有效地找到满足了资源限制的高质量模型。