One of the main challenges in solving time-dependent partial differential equations is to develop computationally efficient solvers that are accurate and stable. Here, we introduce a graph neural network approach to finding efficient PDE solvers through learning using message-passing models. We first introduce domain invariant features for PDE-data inspired by classical PDE solvers for an efficient physical representation. Next, we use graphs to represent PDE-data on an unstructured mesh and show that message passing graph neural networks (MPGNN) can parameterize governing equations, and as a result, efficiently learn accurate solver schemes for linear/nonlinear PDEs. We further show that the solvers are independent of the initial trained geometry, i.e. the trained solver can find PDE solution on different complex domains. Lastly, we show that a recurrent graph neural network approach can find a temporal sequence of solutions to a PDE.
翻译:解决基于时间的局部差异方程式的主要挑战之一是开发精确和稳定的计算高效解答器。 在这里, 我们引入了图形神经网络方法, 通过使用信件传递模型学习找到高效的 PDE 解答器。 我们首先引入了由经典 PDE 解答器启发的 PDE 数据域别变量功能, 以便高效物理表达。 其次, 我们使用图表在无结构的网格上代表 PDE 数据, 并显示电文传递图神经网络( MPGNN) 可以对方程式进行参数化参数化, 从而高效地学习线性/ 非线性 PDE 的精确解答器计划。 我们还进一步显示, 解答器独立于初始培训的几何测量, 即, 训练有素的解答器可以在不同的复杂域找到 PDE 解决方案 。 最后, 我们显示, 经常性的图形神经网络方法可以找到对 PDE 解决方案的时间序列 。