项目名称: 两类分数阶微分方程有效数值计算方法研究
项目编号: No.11526157
项目类型: 专项基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 肖静宇
作者单位: 天津职业技术师范大学
项目金额: 3万元
中文摘要: 分数阶微分方程在许多领域(如生物、地质、金融等)比通常的整数阶微分方程能更深刻准确地描述某些内在的特性,在实际中有很广阔的研究前景,其相关的研究工作具有重要的科学价值。分数阶微分方程数值算法研究的困难在于,分数阶微分算子的非局部性质引起的计算过程中的计算量大、计算复杂、收敛阶低等。本项目的主要目的在于构造高效的计算方法来近似求解分数阶积微分方程及分数阶偏微分方程。主要研究内容:(1)具有弱奇核的分数阶积微分方程的配置方法,分析其超收敛现象,选择特殊配置节点构造快速、稳定的数值算法,并进行误差分析,给出数值实验,验证方法的可行性及收敛性结果;(2)复合型时间空间分数阶偏微分方程的有限差分和有限元方法,给出实用的高阶差分方法和有限元方法格式,证明稳定性,进而研究算法收敛阶,给出数值例子验证收敛结果。本项目拟研究的问题都具有一定的研究基础,并且是非常有价值的。
中文关键词: 分数阶偏微分方程;数值算法;收敛性;稳定性;KKW定理
英文摘要: The fractional differential equations (FDEs) are able to fully capture the behavior of interesting phenomena than the differential equations with integer order in many applications (e. g. biological, geological, financial), therefore it is a most impartent and valuable scientific research topic.The difficulties for numerical approximating FDEs are due to the nonlocal of the fractional differen- tial operator, which led to large amount of calculation and with low order. In this proposal, we aim to construct effectual and higher order numerical methods to approximate fractional integro-differential equations and multiterm time-space fractional partial differential equations. The main ideas of this proposal are as follows. (1) The collocation methods for fractional integro-differential equations with weakly kernels are considered for super convergence. We will choose special collocation points to construe the high order collocation methods and analysis the stability and error of this method. Then, we will give some numerical results to validate the effective and convergence of this method. (2) A finite difference and finite element methods for the multiterm time-space fractional partial differen- tial equations are considered, which may be effectual and convergent with high order. We will show algerithem of this me
英文关键词: Fractional PDEs;Numerical method;Convergence;Stability;KKW type theorem