项目名称: 分数布朗运动的扩张及其随机分析
项目编号: No.11271020
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 申广君
作者单位: 安徽师范大学
项目金额: 60万元
中文摘要: 分数布朗运动是具有长相依性的自相似高斯过程,在经济学、水文、电信、救护、影像处理等领域中有着重要的应用。目前,很多著名学者得到了它的一些扩张并建议使用其扩张作为一些现象的随机模型。由于这些扩张均具有长相依性且结构简单,应用方便,所以对其进行研究有一定的理论意义和应用价值。本项目主要研究分数布朗运动的三种扩张及其随机分析:(1)高斯型扩张的样本轨道性质、随机积分、随机微分方程及其相关的应用问题;(2)非高斯型扩张的随机分析及其相关问题,特别是Rosenblatt过程及其驱动的相关过程的随机分析;(3) Lévy型扩张(即分数Lévy 过程)的样本轨道性质及其驱动的相关过程的随机分析及参数估计问题。
中文关键词: 分数布朗运动;高斯过程;Rosenblatt 过程;Lévy过程;
英文摘要: Fractional Brownian motion is a class of self-similar Gaussian process which exhibits long-range dependence, it has become an important stochastic models in various scientic areas including finince, hydrology, telecommunication, turbulence, image processing. Recently, many authors have got some extensions of fractional Brownian motion and proposed to use them as stochastic models. Because of these extensions preserves long-range dependence and have simple structure, this is meaningful for us to research these processes. This project main research three extensions of fractional Brownian motion and stochastic calculus:(1)we research the sample path properties、stochastic integral、stochastic differential equation and applications of Gaussian extensions; (2) we research stochastic analysis and related problems of non-gaussian extensions, especially, we research the stochastic analysis of Rosenblatt process and some processes driven by Rosenblatt process; (3)we research the sample path properties of fractional Lévy processes and consider the parameter estimation and the stochastic calculus of some processes driven by fractional Lévy processes.
英文关键词: Fractional Brownian motion;Gaussian process;Rosenblatt process;Lévy process;