项目名称: 由布朗运动和分数布朗运动驱动的一类随机控制问题及应用
项目编号: No.11301560
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 井帅
作者单位: 中央财经大学
项目金额: 22万元
中文摘要: 分数布朗运动作为一类特殊的高斯过程,其非半鞅性、非Markov性以及长期(当Hurst指数H>1/2时)或短期(当H<1/2时)记忆性使其在金融领域有越来越多的应用。对由分数布朗运动和经典布朗运动共同驱动的随机控制系统,本课题拟对由分数布朗运动驱动的被积项关于状态变量的线性或非线性分别进行研究。通过分别应用可料Girsanov变换或者Doss-Sussmann变换,本研究有望将此随机控制系统转变为只由经典布朗运动驱动、参数包含分数布朗运动的随机控制系统,并得到其对应的最大值原理和变分不等式。通过与经典结果的比较,将能得出一类新的参数含有分数布朗运动、由布朗运动和一类正交鞅共同驱动的倒向随机微分方程。在此基础上研究该理论在期权定价等方面的应用。通过对此类问题的研究,希望为由分数布朗运动驱动的随机控制问题开启新的研究途径并为分数布朗运动在金融中找到新的应用。
中文关键词: 分数布朗运动;随机最大值原理;正倒向随机微分方程;平均场;广义函数漂移项
英文摘要: As a special class of Gaussian processes, the fractional Brownian motion has found its wider and wider applications in stochastic analysis and finance, thanks to its non semimartingale, non Markovian and long memory (when Hurst paprameter H>1/2) or short memory (when Hurst parameter H<1/2) properties. For a stochastic control system driven by both a fractional Brownian motion and a standard Brownian motion, we plan to treat separately with respect to the cases whether the integrand in the stochastic integral driven by the fractional Brownian motion is linear or nonlinear in the state process. By applying the anticipative Girsanov transformation or the Doss-Sussmann transformation respectively, we hope to transform this stochastic control system into another stochastic control system driven only by the standard Brownian motion, with the coefficients containing the fractional Brownian motion, and derive the corresponding maximum principle and the variational inequality. Comparing with the classical results, we shall obtain a new class of backward stochastic differential equations, with coefficients containing fractional Brownian motion, driven by a standard Brownian motion and an orthogonal martingale. We hope that, by investigating such kind of problem, we can open a new door to study general theory of stochastic
英文关键词: fractional Brownian motion;stochastic maximum principle;FBSDE;mean-field;distributional drift