©作者 | 康斯坦丁
研究方向 | 信号处理与人工智能
先翻译翻译,什么叫惊喜
概率越低的事件发生所造成的惊喜程度高;概率越高的事件发生所造成的惊喜程度低。
但是概率倒数这一运算的性质不是很好,所以在不改变单调性的情况下,可以将惊喜度(surprisal)定义为:
惊喜度,在大部分文章里,都叫做信息量,但这个命名只是香农根据他研究对象的需要而做的,对于很多其它的场景,要生搬硬套就会变得非常不好理解了。
信息量 = 惊喜度,那么信息熵呢?看看公式不言自明:
或是连续形式:
这不就是惊喜度的期望吗?
换句话说,信息熵描述的是整个事件空间会产生的平均惊喜。
对于概率,比较经典的理解是看做是重复试验无限次后事件频率会逼近的值,是一个客观存在的值;但是贝叶斯学派提出了另一种理解方式:即将概率理解为我们主观上对事件发生的确信程度。
机器学习中通常用交叉熵作为损失函数的原因在与,客观分布并不随参数变化,所以即使是优化 KL-散度,对参数求导的时候也只有交叉熵的导数了。
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」