©作者 | 张维鸿
单位 | 中科院深先院
研究方向 | 计算生物学、迁移学习
信息熵
关系辩解
信息熵可以衡量已知一个事件后另一个事件中未知的信息量,未知的信息量越少则两个事件重合度越高,从而,信息熵可以拓展到度量两个分布的距离/差异。
也即:KL散度 = 交叉熵 - 熵
显然,KL 散度不满足对称性,也不满足三角不等式,所以KL散度并不是距离。
✔ 值得注意的是:
在实际应用场景中,真实分布是确定的,故 H(p) 是常数,所以 KL 散度与交叉熵仅相差一个常数,从而,在分类任务中,评估预测分布与真实分布的差异可以用交叉熵损失度量。这就是有监督多分类任务一般用交叉熵损失而不用 KL 散度作为目标函数优化的原因。
相对熵的一些理解:
⌈最优传输OT和p-Wasserstein距离的简介⌋见笔者文章:
⌈最优传输的Python应用实现⌋见笔者文章:
https://zhuanlan.zhihu.com/p/573158960
参考文献
[1] KL散度衡量的是两个概率分布的距离吗?
https://www.zhihu.com/question/345907033/answer/2200649796
[2] 工具人66号:进阶详解KL散度
https://zhuanlan.zhihu.com/p/372835186
[3] KevinCK:交叉熵、相对熵(KL散度)、JS散度和Wasserstein距离(推土机距离)
https://zhuanlan.zhihu.com/p/74075915
更多阅读
#投 稿 通 道#
让你的文字被更多人看到
如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。
总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。
PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析、科研心得或竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。
📝 稿件基本要求:
• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注
• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题
• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算
📬 投稿通道:
• 投稿邮箱:hr@paperweekly.site
• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者
• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿
△长按添加PaperWeekly小编
🔍
现在,在「知乎」也能找到我们了
进入知乎首页搜索「PaperWeekly」
点击「关注」订阅我们的专栏吧