项目名称: 超越梯度近似的旋量Boltzmann方程及其在自旋电子学中的应用
项目编号: No.11274378
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 王正川
作者单位: 中国科学院大学
项目金额: 60万元
中文摘要: 通常的旋量Boltzmann方程是建立在梯度近似基础之上的,即只适用于系统中的势能随时间空间的变化足够缓慢的情形,我们对其进行了推广,提出了一个超越梯度近似的适用于势能变化比较快的新的旋量Boltzmann方程,并用它来研究自旋电子学问题。我们用此新的旋量Boltzmann方程推导出自旋累积和自旋流所满足的自旋扩散方程,并将它与LLG方程联立来研究电流诱导的磁性多层膜的磁化反转以及磁纳米线的畴壁运动。我们将Boltzmann分布函数在局域平衡近似下展开,将温度引入分布函数,以此来研究体系中的热输运,热辅助的磁化动力学和畴壁动力学。而如果将Boltzmann方程的分布函数用Planck常数做半经典近似展开,则可以研究极化电子输运中的量子效应,对于磁化动力学和畴壁动力学中的量子效应,我们则用量子Bloch方程来研究,此方程可以进一步应用于分子自旋电子学的研究。
中文关键词: 量子Boltzmann 方程;自旋电子学;旋量Boltzmann 方程;磁化动力学;畴壁动力学
英文摘要: The usual spinor Boltzmann equation is based on gradient approximation which will be violated when the potential in the system vary rapidly with position or time. We generalize the spinor Boltzmann equation beyond gradient approximation and apply it to study the spintronics. The spin diffusion equation satisfied by the spin accumulation and spin current can be derived from the generalized spinor Boltzmann equation, along with Landau-Lifshitz-Gilbert(LLG) eqution it can be used to study magnitization dynamics of multilayer and domain-wall dynamics diven by a spin-polarized current. Under the assumption of local equilibrium, we expand the spinor distribution function around the local equlibrium distribution in which the temperature can naturally appear, then the thermal current, thermal assisted magnitization dynamics and domain-wall dynamics can be explored. If we expand the spinor Boltzmann distribution function by the Planck constant, we can study the quantum effect in the spin-polarized electronic transport, while the quantum effect in the magnitization dynamics and domain-wall dynamics should be explored by the Block equation, the latter can also be applied to the molecular spintronics.
英文关键词: Quantum Boltzmann Equation;Spintronics;Spinor Boltzmann equation;Magnetization Dynamics;Domain-Wall Dynamics