本话题关于日常用语「概率」,用于讨论生活中的运气、机会,及赌博、彩票、游戏中的「技巧」。关于抽象数学概念「概率」的讨论,请转 概率(数学)话题。

VIP内容

为土木工程专业的学生和专业人士介绍概率机器学习的关键概念和技术;有许多循序渐进的例子、插图和练习。

这本书向土木工程的学生和专业人员介绍了概率机器学习的概念,以一种对没有统计学或计算机科学专业背景的读者可访问的方式提出了关键的方法和技术。通过一步步的例子、插图和练习,它清晰而直接地展示了不同的方法。掌握了材料,读者将能够理解更高级的机器学习文献,从这本书中提取。

本书介绍了概率机器学习的三个子领域的关键方法:监督学习、非监督学习和强化学习。它首先涵盖了理解机器学习所需的背景知识,包括线性代数和概率论。接着介绍了有监督和无监督学习方法背后的贝叶斯估计,以及马尔可夫链蒙特卡洛方法,该方法使贝叶斯估计能够在某些复杂情况下进行。这本书接着涵盖了与监督学习相关的方法,包括回归方法和分类方法,以及与非监督学习相关的概念,包括聚类、降维、贝叶斯网络、状态空间模型和模型校准。最后,本书介绍了不确定环境下理性决策的基本概念,以及不确定和序列上下文下理性决策的基本概念。在此基础上,这本书描述了强化学习的基础,虚拟代理学习如何通过试验和错误作出最优决策,而与它的环境交互。

目录内容: Chapter 1: 引言 Introduction Part one: 背景 Background
Chapter 2: 线性代数 Chapter 3: 概率理论 Probability Theory Chapter 4: 概率分布 Probability Distributions Chapter 5: 凸优化 Convex Optimization Part two: 贝叶斯估计 Bayesian Estimation Chapter 6: 从数据中学习 Learning from Data Chapter 7: 马尔科夫链蒙特卡洛 Markov Chain Monte Carlo
Part three: 监督学习 Supervised Learning Chapter 8: 回归 Regression Chapter 9: 分类 Classification Part four: 无监督学习 Unsupervised Learning Chapter 10: 聚类 Clustering Chapter 11: 贝叶斯网络 Bayesian Networks Chapter 12: 状态空间 State-Space Models Chapter 13: 模型 Model Calibration Part five: 强化学习 Reinforcement Learning Chapter 14: 不确定上下文决策 Decision in Uncertain Contexts Chapter 15: 序列决策 Sequential Decisions

成为VIP会员查看完整内容
0
54
父主题
子主题
Top