We prove that a Gibbs point process interacting via a finite-range, repulsive potential $\phi$ exhibits a strong spatial mixing property for activities $\lambda < e/\Delta_{\phi}$, where $\Delta_{\phi}$ is the potential-weighted connective constant of $\phi$, defined recently in [MP21]. Using this we derive several analytic and algorithmic consequences when $\lambda$ satisfies this bound: (1) We prove new identities for the infinite volume pressure and surface pressure of such a process (and in the case of the surface pressure establish its existence). (2) We prove that local block dynamics for sampling from the model on a box of volume $N$ in $\mathbb R^d$ mixes in time $O(N \log N)$, giving efficient randomized algorithms to approximate the partition function of and approximately sample from these models. (3) We use the above identities and algorithms to give efficient approximation algorithms for the pressure and surface pressure.
翻译:我们证明,Gibbs点进程通过一个有限、可令人厌恶的潜在美元进行互动,显示了一个强大的空间混合属性,用于活动$$\lambda < e/\Delta ⁇ ⁇ ffi}$(Delta ⁇ ffi}$Delta ⁇ ffe}$,这是最近在[MP21]中定义的潜在加权连接常数$\phi$。利用这个过程,当$\lambda$满足这一约束时,我们得出若干分析和算法后果:(1) 我们证明,这种过程的无限体积压力和表面压力具有新的特性(如果是表面压力,则可以证实其存在)。 (2) 我们证明,从一个体积为$\mathbbl R ⁇ d$($N)的盒子上取样的当地区块动态,在时间为$O(N\log N)$(美元)的框上,提供了高效的随机算法,以估计这些模型的分区功能和大约样本。 (3)我们使用上述身份和算法来为压力和表面压力提供有效的近似算法。