Many forms of dependence manifest themselves over time, with behavior of variables in dynamical systems as a paradigmatic example. This paper studies temporal dependence in dynamical systems from a logical perspective, by extending a minimal modal base logic of static functional dependencies. We define a logic for dynamical systems with single time steps, provide a complete axiomatic proof calculus, and show the decidability of the satisfiability problem for a substantial fragment. The system comes in two guises: modal and first-order, that naturally complement each other. Next, we consider a timed semantics for our logic, as an intermediate between state spaces and temporal universes for the unfoldings of a dynamical system. We prove completeness and decidability by combining techniques from dynamic-epistemic logic and modal logic of functional dependencies with complex terms for objects. Also, we extend these results to the timed logic with functional symbols and term identity. Finally, we conclude with a brief outlook on how the system proposed here connects with richer temporal logics of system behavior, and with dynamic topological logic.
翻译:许多形式的依赖性在时间上表现出来,动态系统中变量的行为是一个典型的例子。本文从逻辑角度研究动态系统中的时间依赖性,通过扩展静态功能依赖性的最低模型基础逻辑,从逻辑角度研究动态系统中的时间依赖性。我们为动态系统定义了具有单一时间步骤的最小模型基逻辑。我们提供了完整的不言而喻的校验计算法,并展示了相对性问题对于一个实质性碎片的可归因性。这个系统以两种伪装形式出现:模式和顺序,这自然是相辅相成的。接下来,我们考虑我们逻辑的定时语义,作为动态系统演化的状态空间和时间宇宙之间的中间体。我们通过将动态-宇宙逻辑和功能依赖性模式逻辑的技术与复杂的物体术语结合起来来证明我们的完整性和可归因性逻辑。此外,我们将这些结果扩展为具有功能符号和术语特性的时间逻辑。最后,我们简要地审视了我们在这里提议的系统如何与更丰富的时间逻辑和动态表学逻辑联系起来。