White noise is a fundamental and fairly well understood stochastic process that conforms the conceptual basis for many other processes, as well as for the modeling of time series. Here we push a fresh perspective toward white noise that, grounded on combinatorial considerations, contributes to give new interesting insights both for modelling and theoretical purposes. To this aim, we incorporate the ordinal pattern analysis approach which allows us to abstract a time series as a sequence of patterns and their associated permutations, and introduce a simple functional over permutations that partitions them into classes encoding their level of asymmetry. We compute the exact probability mass function (p.m.f.) of this functional over the symmetric group of degree $n$, thus providing the description for the case of an infinite white noise realization. This p.m.f. can be conveniently approximated by a continuous probability density from an exponential family, the Gaussian, hence providing natural sufficient statistics that render a convenient and simple statistical analysis through ordinal patterns. Such analysis is exemplified on experimental data for the spatial increments from tracks of gold nanoparticles in 3D diffusion.
翻译:白噪音是一个基本且相当容易理解的随机过程,它符合许多其他过程的概念基础,以及时间序列的模型。 我们在这里对白噪音提出一个新的视角,它基于组合考虑,有助于为建模和理论目的提供新的有趣见解。 为此,我们采用了交点模式分析方法,使我们能够抽取一个时间序列,作为模式的序列及其相关的变异,并引入一个简单的功能性超变法,将它们分成不同类别,编码它们的不对称程度。我们对这一功能的精确概率质量函数(p.m.f.)进行了计算(p.m.f.),对等量组($美元)进行了计算,从而为无限白噪音的实现提供了描述。这个p.m.f.可以方便地被一个指数式家族(高斯人)的连续概率密度所近似近,从而提供自然充分的统计数据,通过星系模式进行方便和简单的统计分析。这种分析以实验数据为3D扩散金纳米粒子轨道的空间增量的实验数据为例。