Learning a new concept from one example is a superior function of the human brain and it is drawing attention in the field of machine learning as a one-shot learning task. In this paper, we propose one of the simplest methods for this task with a nonparametric weight imprinting, named Direct ONE-shot learning (DONE). DONE adds new classes to a pretrained deep neural network (DNN) classifier with neither training optimization nor pretrained-DNN modification. DONE is inspired by Hebbian theory and directly uses the neural activity input of the final dense layer obtained from data that belongs to the new additional class as the synaptic weight with a newly-provided-output neuron for the new class, transforming all statistical properties of the neural activity into those of synaptic weight by quantile normalization. DONE requires just one inference for learning a new concept and its procedure is simple, deterministic, not requiring parameter tuning and hyperparameters. DONE overcomes a severe problem of existing weight imprinting methods that DNN-dependently interfere with the classification of original-class images. The performance of DONE depends entirely on the pretrained DNN model used as a backbone model, and we confirmed that DONE with current well-trained backbone models perform at a decent accuracy.


翻译:从一个实例中学习一个新概念是人类大脑的优越功能,它正在机器学习领域引起人们的注意,作为一次性学习任务。在本文中,我们提出了这一任务的最简单方法之一,即非参数重量印记,名为直接一光学习(DONE)。DONE在经过预先训练的深神经网络分类(DNN)中增加了新课程,既无培训优化,也无预先训练的DNNN修改。DONE受Hebbian理论的启发,直接使用从属于新类别的数据中获取的最后密集层神经活动投入,作为新类的合成重量,即新类中新提供输出神经元的合成重量,将神经活动的所有统计属性转换成四光度正常化的合成重量。DONE只需要一种推断来学习新概念,其程序简单、确定性,不需要参数调整和超光度度。DONE克服了现有重度印刷方法的严重问题,DNNNE独立地干扰了原级图像的分类。DONE的性能表现完全取决于当前模型的正确性,我们所使用的基础状态。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Impossibility Theorems for Feature Attribution
Arxiv
0+阅读 · 2022年12月22日
Gradient boosting for extreme quantile regression
Arxiv
0+阅读 · 2022年12月21日
Arxiv
0+阅读 · 2022年12月21日
Arxiv
0+阅读 · 2022年12月21日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员