Semi-supervised learning based methods are current SOTA solutions to the noisy-label learning problem, which rely on learning an unsupervised label cleaner first to divide the training samples into a labeled set for clean data and an unlabeled set for noise data. Typically, the cleaner is obtained via fitting a mixture model to the distribution of per-sample training losses. However, the modeling procedure is \emph{class agnostic} and assumes the loss distributions of clean and noise samples are the same across different classes. Unfortunately, in practice, such an assumption does not always hold due to the varying learning difficulty of different classes, thus leading to sub-optimal label noise partition criteria. In this work, we reveal this long-ignored problem and propose a simple yet effective solution, named \textbf{C}lass \textbf{P}rototype-based label noise \textbf{C}leaner (\textbf{CPC}). Unlike previous works treating all the classes equally, CPC fully considers loss distribution heterogeneity and applies class-aware modulation to partition the clean and noise data. CPC takes advantage of loss distribution modeling and intra-class consistency regularization in feature space simultaneously and thus can better distinguish clean and noise labels. We theoretically justify the effectiveness of our method by explaining it from the Expectation-Maximization (EM) framework. Extensive experiments are conducted on the noisy-label benchmarks CIFAR-10, CIFAR-100, Clothing1M and WebVision. The results show that CPC consistently brings about performance improvement across all benchmarks. Codes and pre-trained models will be released at \url{https://github.com/hjjpku/CPC.git}.


翻译:以半监督的学习为基础的方法,是目前对噪音标签学习问题的SOTA 解决方案,它依靠的是学习一个不受监督的标签清洁剂,先将培训样本分成一个标签的清洁数据标本,再将噪音数据标本。一般而言,清洁剂是通过安装一个混合模型获得的,然后分配每个抽样的培训损失。然而,模型程序是\emph{类的分类 Agnnositi},并假定清洁和噪音样本在不同类别中的损失分布相同。不幸的是,在实践中,这种假设并不总是能够维持下去,因为不同类别不同的学习难度不同,因此导致低于最佳的标签噪声分配标准。在这项工作中,我们揭示了这一长期的标志问题,并提出了一个简单而有效的解决方案,名为\ textbf{P}P}roto 类型标签噪音的分布情况。但是,建模程序是 & textblickrb{C} 之前的标签( textbrickf{C}leanger) 。 与以往处理所有类别的工作不同, CP 完全考虑损失分布的高度遗传特性, 并且应用了分类- 度标签标签标签标签标签隔过隔隔隔隔隔的噪音标值 。马质标准的模型 将显示整个的清晰度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 标准 度 度 度 的稳定性 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
124+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
14+阅读 · 2019年9月11日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
124+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员