Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
翻译:磁共振动指纹(MRF)是一种高效的定量磁共振动图像(MRF)技术,它可以从单一扫描中提取T1、T2、B0、和B1等重要的组织和系统参数,如T1、T2、B0和B1。这种属性还使它具有追溯性合成对比加权图像的吸引力。一般而言,T1加权、T2加权等对比加权图像可以通过旋转动力模拟(即,布洛克或扩展阶段图模型)直接从参数图中合成。然而,这些方法往往展示出由于绘图、序列建模和数据采集过程中的不完善而导致的重要组织和系统参数。我们在这里建议一种基于监督的基于学习的方法,直接合成MRF数据,直接合成MRF数据的对比加权图像。为了实施我们直接的对比合成(DCS)方法,我们使用一个基于多分支的模型U-网络作为发电机。 投入的MRF数据被用于直接合成T1加权、T2加权和数据采集过程,我们经过精细度的常规流的图像,用来通过对正压的图像进行常规对流和对流的对流的对流的对比分析,通过对流的对等的对等的对等的模拟,通过浏览的对等的图像进行演示,通过对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对准,对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对等的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式的对式