We propose a global convergent numerical method to reconstruct the initial condition of a nonlinear parabolic equation from the measurement of both Dirichlet and Neumann data on the boundary of a bounded domain. The first step in our method is to derive, from the nonlinear governing parabolic equation, a nonlinear systems of elliptic partial differential equations (PDEs) whose solution yields directly the solution of the inverse source problem. We then establish a contraction mapping-like iterative scheme to solve this system. The convergence of this iterative scheme is rigorously proved by employing a Carleman estimate and the argument in the proof of the traditional contraction mapping principle. This convergence is fast in both theoretical and numerical senses. Moreover, our method, unlike the methods based on optimization, does not require a good initial guess of the true solution. Numerical examples are presented to verify these results.
翻译:我们提出一个全球趋同数字方法,从测量Drichlet和Neumann数据的角度,从一个封闭域边界上的非线性抛物线方程式来重建非线性抛物线式方程式的初始状态。我们的方法的第一步是从非线性抛物线方程式(PDEs)中得出一个非线性半偏差方程式(PDEs)的非线性非线性部分方程式(PDEs),其解决方案直接产生对反源问题的解决方案。然后我们建立一个类似收缩绘图的迭接机制来解决这个系统。通过使用Carleman的估算和用于证明传统收缩绘图原理的论证,这个迭代方程式的趋同性得到了严格的证明。这种趋同在理论和数字意义上都是快速的。此外,我们的方法与基于优化的方法不同,不需要对真正的解决方案进行良好的初步猜测。我们提出了一些数值的例子来验证这些结果。