We develop new tools to study the landscapes of nonconvex optimization problems. Specifically, we leverage the fact that many such problems can be paired with others via a smooth parametrization of their domains. The global optima of such pairs of problems correspond to each other, but their landscapes can be significantly different. We introduce a framework to relate the two landscapes. Applications include: optimization over low-rank matrices and tensors by optimizing over a factorization; the Burer-Monteiro approach to semidefinite programs; training neural networks by optimizing over their weights and biases; and quotienting out symmetries. In all these examples, one of the two problems is smooth, and hence can be tackled with algorithms for optimization on manifolds. These can find desirable points (e.g., critical points). We determine the properties that ensure these map to desirable points for the other problem via the smooth parametrization. These new tools enable us to strengthen guarantees for an array of optimization problems, previously obtained on a case-by-case basis in the literature.
翻译:我们开发了新的工具来研究非convex优化问题的地貌。 具体地说, 我们利用许多这样的问题可以通过其域的平稳平衡来与其它问题相匹配这一事实。 这些问题的全球性选择性彼此对应, 但它们的地貌可能大不相同。 我们引入了将这两处地貌联系起来的框架。 应用包括: 通过优化因素化, 优化低级矩阵和高压; 布鲁尔- 蒙泰罗对半确定性方案的方法; 通过优化其权重和偏向来培训神经网络; 以及 以对称为参照。 在所有这些例子中, 其中一个问题是平稳的, 因而可以用对多种物进行优化的算法来解决 。 这些可以找到理想的点( 例如, 临界点 ) 。 我们确定这些地图的属性, 以确保这些地图通过光滑的对另一个问题的可取点。 这些新工具使我们能够加强对先前在文献中逐案获得的一系列优化问题的保障。