项目名称: Aubry-Mather理论在弱光滑平面微分系统中的应用
项目编号: No.11461056
项目类型: 地区科学基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 汪小明
作者单位: 上饶师范学院
项目金额: 36万元
中文摘要: Aubry-Mather理论是近年来非线性科学所关注的重要问题,该理论与不变曲线的破裂和解的稳定性有关。本项目选择Aubry-Mather理论在弱光滑平面微分系统中的应用作为研究对象,具体内容包括探寻平面哈密顿不对称微分系统在缺乏高阶光滑性的条件下Aubry-Mather不变集存在的充分条件;深入研究在较弱的光滑性条件下,平面可逆微分系统仍存在不变的Aubry-Mather集。我们拟通过引进合适的作用-角变量克服非光滑性,结合非线性分析、微分方程稳定性理论和变分方法,把问题转化成相空间上保面积映射、辛同胚和单调扭转映射进行研究。通过本项目的研究,有助于对平面微分系统动力学稳定性行为作更好的理解,丰富和发展微分方程和动力系统的相关理论和方法。
中文关键词: Aubry-Mather集;弱光滑性;不对称系统;可逆系统
英文摘要: In recent years, Aubry-Mather theory has become an important issue in nonlinear science,and it relates to the breakdown of invariant curves and stability of the solutions. The research object of this project is the application of Aubry-Mather theory to weak smooth planar differential systems. The main contents include exploring the sufficient conditions for the existence of Aubry-Mather invariant sets of planar Hamiltonian asymmetric differential systems in the lack of conditions of high order smoothness; deeply discussing planar reversible differential systems still exist Aubry-Mather invariant sets under the conditions of weaker smoothness. The problem is converted into area-preserving map、 symplectic homeomorphism and twist map by introducing appropriate action-angle variable that can overcome the nonsmoothness,and combining with nonlinear analysis,stability theory of differential equation and variational approach. The project research contributes to a better understanding of dynamics stability behavior of planar differential system, enriching and developing the relevant theories and methods of differential equations and dynamical systems.
英文关键词: Aubry-Mather sets;Weak smoothness;Asymmetric system;Reversible system