Time series data are often obtained only within a limited time range due to interruptions during observation process. To classify such partial time series, we need to account for 1) the variable-length data drawn from 2) different timestamps. To address the first problem, existing convolutional neural networks use global pooling after convolutional layers to cancel the length differences. This architecture suffers from the trade-off between incorporating entire temporal correlations in long data and avoiding feature collapse for short data. To resolve this tradeoff, we propose Adaptive Multi-scale Pooling, which aggregates features from an adaptive number of layers, i.e., only the first few layers for short data and more layers for long data. Furthermore, to address the second problem, we introduce Temporal Encoding, which embeds the observation timestamps into the intermediate features. Experiments on our private dataset and the UCR/UEA time series archive show that our modules improve classification accuracy especially on short data obtained as partial time series.
翻译:由于观测过程中的中断,时间序列数据往往只在有限的时间范围内获得。为了对此类部分时间序列进行分类,我们需要说明1)从2个不同的时间戳中提取的变量长度数据。为了解决第一个问题,现有的进化神经网络在进化层之后使用全球集合来消除长度差异。这一结构由于在长期数据中纳入全部时间相关性和避免短数据特征崩溃之间的权衡而受到损害。为了解决这一权衡,我们提议适应性多尺度集合,将适应性层数的特征汇总起来,即仅前几个短数据层数,而长数据层数则多层数的特征汇总起来。此外,为了解决第二个问题,我们引入了将观察时间戳嵌入中间特征的Temoral Enalcoding。在我们的私人数据集和UCR/UEA时间序列档案上进行的实验表明,我们的模块提高了分类准确性,特别是在作为部分时间序列获得的短数据上。