项目名称: 关于 Finsler 流形上调和映射与 Laplacian 的若干问题研究

项目编号: No.11471246

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 贺群

作者单位: 同济大学

项目金额: 66万元

中文摘要: 调和映射和 Laplacian是整体微分几何及几何分析的重要研究课题。在黎曼几何中,这些问题得到了广泛而深入的研究,形成了较为完善的理论体系。然而在Finsler 情形下,相关的计算更为繁琐、非线性问题更为复杂,成为研究的主要障碍。 本项主要研究Finsler几何中的相应问题,内容包括:研究到Finsler流形的调和映射和极小浸入的几何性质,如存在性和稳定性问题,进一步推广Bernstein 型定理、Liouville型定理和其他刚性定理;考虑Finsler (p-)Laplacian的第一特征值问题,给出各种估计及比较定理,建立相应的刚性定理;研究Minkowski空间、Randers空间、(α,β)空间及其子流形的曲率性质和度量性质。 本项目的研究是黎曼情形下相关问题的推广与延伸,旨在充实和完善整体Finsler几何的理论成果,探索新的方法与思路.

中文关键词: 调和映射;Laplace算子;第一特征值;极小子流形;Ricci;曲率

英文摘要: Harmonic maps and Laplacian are very important issuses in globle differential geometry and geometric analysis, which have been studied intensively and comprehensively in Riemannian geometry, and the relatively perfect theory systems have been formed. However, in Finsler case, the tedious calculations and complicated nonlinear problems have become the main obstacles in the course of studies. This project aims to study the corresponding topics in Finsler geometry. Specifically, we are to study geometric properties, including the existence and the stability, of harmonic maps and minimal immersions into Finsler manifolds. We will generalize further the Bernstein type theorems, the Liouville type theorems and other rigidity theorems. We will also consider some problems on the first eigenvalue of Finsler Laplacian and Finsler p-Laplacian. We shall not only give some estimates and comparison theorems, but also build some rigidity theorems. Moreover, We will investigate the curvature properties and metric properties of Finsler manifolds and submanifolds with special metrics, such as Minkowski spaces, Randers spaces and (α,β)-metric spaces. The research of this project can be viewed as a generalization and development of the corresponding topics in the Riemannian case.The main purpose is to enrich and improve theoretical results in Finsler geometric analysis and explore new ideas and methods.

英文关键词: harmonic map;Laplacian;first eigenvalue;minimal submanifold;Ricci curvature

成为VIP会员查看完整内容
1

相关内容

专知会员服务
32+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月16日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
31+阅读 · 2020年3月26日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
DeepMind Nature发文:AI能提出和证明数学定理
学术头条
0+阅读 · 2021年12月2日
vivo OriginOS Ocean 系统亮相 | 苹果仍在开发「AirPower」
ZEALER订阅号
0+阅读 · 2021年11月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员