This paper solves the continuous classification problem for finite clouds of unlabelled points under Euclidean isometry. The Lipschitz continuity of required invariants in a suitable metric under perturbations of points is motivated by the inevitable noise in measurements of real objects. The best solved case of this isometry classification is known as the SSS theorem in school geometry saying that any triangle up to congruence (isometry in the plane) has a continuous complete invariant of three side lengths. However, there is no easy extension of the SSS theorem even to four points in the plane partially due to a 4-parameter family of 4-point clouds that have the same six pairwise distances. The computational time of most past metrics that are invariant under isometry was exponential in the size of the input. The final obstacle was the discontinuity of previous invariants at singular configurations, for example, when a triangle degenerates to a straight line. All the challenges above are now resolved by the Simplexwise Centred Distributions that combine inter-point distances of a given cloud with the new strength of a simplex that finally guarantees the Lipschitz continuity. The computational times of new invariants and metrics are polynomial in the number of points for a fixed Euclidean dimension.


翻译:单纯形强度是连续等距分类欧几里德无标记点云的关键 翻译后的摘要: 本文解决了欧几里德等距下带有噪声的有限无标记点云的连续分类问题。在合适的度量下,所需的不变量在点的扰动下的Lipschitz连续性受到实际物体测量中的不可避免的噪声的启发。最好的欧几里德等距分类的已解决情况被称为SSS定理,它表明任何三角形都可以通过三边长的连续完全不变量进行分类。然而,即使在平面上的四个点中,也没有SSS定理的简单扩展,部分原因是4参数4点云系列具有相同的6个成对距离。大多数先前具有等距不变性的度量的计算时间是输入大小的指数级。最后一个障碍是旧的不变量在奇异配置(例如,当三角形退化为直线时)处的不连续性。现在,通过将给定云的点之间距离与新单纯形强度结合起来,解决了以上所有挑战,最终保证了Lipschitz连续性。新不变量和度量的计算时间对于固定欧几里德维数的点数为多项式。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
31+阅读 · 2021年7月15日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
146+阅读 · 2020年6月28日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
30+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
0+阅读 · 2023年5月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员