The model of {\em population protocols} provides a universal platform to study distributed processes driven by random pairwise interactions of anonymous agents. The {\em time complexity} of population protocols refers to the number of interactions required to reach a final configuration. More recently, the focus is on the {\em parallel time} defined as the time complexity divided by $n,$ where a given protocol is {\em efficient} if it stabilises in parallel time $O(\mbox{poly}\log n)$. Among computational deficiencies of such protocols are depleting fraction of {\em meaningful interactions} closing in on the final stabilisation (suppressing parallel efficiency), computation power of constant-space population protocols limited to semi-linear predicates in Presburger arithmetic (reflecting on time-space trade offs), and indefinite computation (impacting multi-stage protocols). With these deficiencies in mind, we propose a new {\em selective} variant of population protocols by imposing an elementary structure on the state space, together with a conditional probabilistic choice during random interacting pair selection. We show that such protocols are capable of computing functions more complex than semi-linear predicates, i.e., beyond Presburger arithmetic. We provide the first non-trivial study on median computation (in population protocols) in a comparison model where the operational state space of agents is fixed and the transition function decides on the order between (potentially large) hidden keys associated with the interacting agents. We show that computation of the median of $n$ numbers requires $\Omega(n)$ parallel time and the problem can be solved in $O(n\log n)$ parallel time in expectation and whp in standard population protocols. Finally, we show $O(\log^4 n)$ parallel time median computation in selective population protocols.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月30日
Arxiv
0+阅读 · 2023年6月28日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员