Vandermonde matrices are usually exponentially ill-conditioned and often result in unstable approximations. In this paper, we introduce and analyze the \textit{multivariate Vandermonde with Arnoldi (V+A) method}, which is based on least-squares approximation together with a Stieltjes orthogonalization process, for approximating continuous, multivariate functions on $d$-dimensional irregular domains. The V+A method addresses the ill-conditioning of the Vandermonde approximation by creating a set of discrete orthogonal basis with respect to a discrete measure. The V+A method is simple and general. It relies only on the sample points from the domain and requires no prior knowledge of the domain. In this paper, we first analyze the sample complexity of the V+A approximation. In particular, we show that, for a large class of domains, the V+A method gives a well-conditioned and near-optimal $N$-dimensional least-squares approximation using $M=\mathcal{O}(N^2)$ equispaced sample points or $M=\mathcal{O}(N^2\log N)$ random sample points, independently of $d$. We also give a comprehensive analysis of the error estimates and rate of convergence of the V+A approximation. Based on the multivariate V+A approximation, we propose a new variant of the weighted V+A least-squares algorithm that uses only $M=\mathcal{O}(N\log N)$ sample points to give a near-optimal approximation. Our numerical results confirm that the (weighted) V+A method gives a more accurate approximation than the standard orthogonalization method for high-degree approximation using the Vandermonde matrix.


翻译:Vandermonde 矩阵通常是指数性不完善的, 并且往往导致不稳定的近似值。 在本文中, 我们引入并分析\ textit{ 多元变异 Vandermonde 与 Arnoldi (V+A) 方法} 。 该方法基于最小平方近似, 与 Stieltjes 或thoconal化进程一起, 以近似于连续、 多变异功能 $d- 维元非常规域。 V+A 方法解决 Vandermonde 近似不完善的问题, 方法是在离散测量测量时建立一套离散或异基基。 V+A 方法仅以域的样本点为基础, 并且不需要对域进行事先了解。 V+A+A ormod 近端的快速中位数值 。 我们的 V+A+ mal mal 直径直径直径直径直径直径直径直径直径直径直径直径直径直径直值分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月20日
Arxiv
0+阅读 · 2023年3月18日
Arxiv
0+阅读 · 2023年3月17日
A Survey on Edge Intelligence
Arxiv
49+阅读 · 2020年3月26日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员