We consider the truncated multivariate normal distributions for which every component is one-sided truncated. We show that this family of distributions is an exponential family. We identify $\mathcal{D}$, the corresponding natural parameter space, and deduce that the family of distributions is not regular. We prove that the gradient of the cumulant-generating function of the family of distributions remains bounded near certain boundary points in $\mathcal{D}$, and therefore the family also is not steep. We also consider maximum likelihood estimation for $\boldsymbol{\mu}$, the location vector parameter, and $\boldsymbol{\Sigma}$, the positive definite (symmetric) matrix dispersion parameter, of a truncated non-singular multivariate normal distribution. We prove that each solution to the score equations for $(\boldsymbol{\mu},\boldsymbol{\Sigma})$ satisfies the method-of-moments equations, and we obtain a necessary condition for the existence of solutions to the score equations.


翻译:我们考虑每个分量均为单侧截断的截断多元正态分布。我们证明了该分布族是一种指数族。我们确定了 $\mathcal{D}$,相应的自然参数空间,并推断该分布族也不是正则的。我们证明了该分布族的累积生成函数的梯度在$\mathcal{D}$中某些边界点附近保持有界,因此该族也不是陡峭的。我们还考虑了截断非奇异多元正态分布的位置向量参数 $\boldsymbol{\mu}$ 和正定(对称)矩阵分散参数 $\boldsymbol{\Sigma}$ 的最大似然估计。我们证明了 $(\boldsymbol{\mu},\boldsymbol{\Sigma})$ 的得分方程的每个解都满足矩估计方程,并得到了得分方程存在解的必要条件。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月7日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员