The paper concerns problems of the recovery of operators from noisy information in weighted $L_q$-spaces with homogeneous weights. A number of general theorems are proved and applied to finding exact constants in multidimensional Carlson type inequalities with several weights and problems of the recovery of differential operators from a noisy Fourier transform. In particular, optimal methods are obtained for the recovery of powers of generalized Laplace operators from a noisy Fourier transform in the $L_p$-metric.
翻译:带有对称性质权重的最优恢复和广义Carlson不等式
翻译后的摘要:
本文涉及带有同态权重的加权$L_q$空间中从含有噪声信息的数据中恢复算子的问题。我们证明了一些关于多重Carlson型不等式的一般定理,并将其应用于求解含有多个权重的问题以及从带有噪音的傅里叶变换中恢复微分算子的问题。特别地,我们得到了$L_p$度量下从带有噪音的傅里叶变换中恢复广义Laplace算子幂的最优方法。