In this article, we propose a new class of consistent tests for $p$-variate normality. These tests are based on the characterization of the standard multivariate normal distribution, that the Hessian of the corresponding cumulant generating function is identical to the $p\times p$ identity matrix and the idea of decomposing the information from the joint distribution into the dependence copula and all marginal distributions. Under the null hypothesis of multivariate normality, our proposed test statistic is independent of the unknown mean vector and covariance matrix so that the distribution-free critical value of the test can be obtained by Monte Carlo simulation. We also derive the asymptotic null distribution of proposed test statistic and establish the consistency of the test against different fixed alternatives. Last but not least, a comprehensive and extensive Monte Carlo study also illustrates that our test is a superb yet computationally convenient competitor to many well-known existing test statistics.
翻译:在本文中,我们提出了一种新的一类关于 $p$ 维正态性的一致检验。这些检验是基于标准多元正态分布的特征,即相应的累积生成函数的海森矩阵等同于 $p \times p$ 的单位矩阵,以及将联合分布信息分解为相关赋形和所有边际分布的思想。在多元正态的零假设下,我们提出的检验统计量与未知均值向量和协方差矩阵无关,因此,检验的无分布临界值可通过蒙特卡罗模拟得到。我们还推导了所提出的检验统计量的渐近零分布,并证明了检验对于不同的确定性备择假设一致。最后但并非最不重要的是,一项全面而广泛的蒙特卡罗研究还表明,我们的检验是许多众所周知的现有检验统计量的出色而计算方便的竞争者。