Class activation map (CAM) helps to formulate saliency maps that aid in interpreting the deep neural network's prediction. Gradient-based methods are generally faster than other branches of vision interpretability and independent of human guidance. The performance of CAM-like studies depends on the governing model's layer response, and the influences of the gradients. Typical gradient-oriented CAM studies rely on weighted aggregation for saliency map estimation by projecting the gradient maps into single weight values, which may lead to over generalized saliency map. To address this issue, we use a global guidance map to rectify the weighted aggregation operation during saliency estimation, where resultant interpretations are comparatively clean er and instance-specific. We obtain the global guidance map by performing elementwise multiplication between the feature maps and their corresponding gradient maps. To validate our study, we compare the proposed study with eight different saliency visualizers. In addition, we use seven commonly used evaluation metrics for quantitative comparison. The proposed scheme achieves significant improvement over the test images from the ImageNet, MS-COCO 14, and PASCAL VOC 2012 datasets.
翻译:等级激活地图( CAM) 有助于绘制有助于解释深神经网络预测的显要地图。 基于梯度的方法通常比其他视觉解释分支更快,并且独立于人类指导。 CAM类研究的绩效取决于管理模型的层反应以及梯度的影响。典型的梯度导向 CAM研究依靠加权汇总,通过将梯度地图投射成单一重量值来估计显要性地图,这可能导致超广度显著度地图。为了解决这一问题,我们使用全球指导地图来纠正突出估计期间的加权汇总操作,在突出估计期间,由此产生的解释相对清洁和具体实例。我们通过对特征地图及其相应的梯度地图进行元素倍增来获取全球指导地图。为了验证我们的研究,我们用8种不同的显性视觉显示器对拟议研究进行比较。此外,我们使用7种常用的评价指标进行定量比较。拟议的办法大大改进了图像网、 MS-COCO 14 和 PCAL VOC 2012 数据集的测试图像。