In the optimal general factor problem, given a graph $G=(V, E)$ and a set $B(v) \subseteq \mathbb Z$ of integers for $v \in V$, we seek for an edge subset $F$ of maximum cardinality subject to $d_F(v) \in B(v)$ for $v \in V$, where $d_F(v)$ denotes the number of edges in $F$ incident to $v$. A recent crucial work by Dudycz and Paluch shows that this problem can be solved in polynomial time if each $B(v)$ has no gap of length more than one. While their algorithm is very simple, its correctness proof is quite complicated. In this paper, we formulate the optimal general factor problem as the jump system intersection, and reveal when the algorithm by Dudycz and Paluch can be applied to this abstract form of the problem. By using this abstraction, we give another correctness proof of the algorithm, which is simpler than the original one. We also extend our result to the valuated case.
翻译:在最佳的一般因素问题中,如果有一个G$=(V,E) 和一套 $B(v)\ subseteq \ mathbb Z$ 和一套 $V (mostseteque $v) 和 $B(v) 和 $B(v) $B(v) $) 和 set $B(v) = (v) = (mostseteg) 和 $B(v) \ subseteq = (mostseteq) $V 美元,我们寻求一个最大最基本基点的子子子 $F(v) = (in B) (v) $v) $v (in V$), $d_ F(v) $(v) $(f) 和 $(f) 和 $(v) 和 $(bet $ (m) $ (set $) 。 Dudic (s) 和 paluch 最近一项关键工作显示, 如果每个B(v) jus(f) jus(v) ) just(v) ) 和 Palch(f) 的计算每美元没有超过 1美元长度的长度差差差差差差差差差差差差差差差差, 我们就会可以解决问题, 问题,, 我们就可以在多一个多一个多一个多时, 问题在多一点时间里, 。我们再给问题解算法则寻求一个问题解, 。