In this study, we investigate the task of few-shot Generative Domain Adaptation (GDA), which involves transferring a pre-trained generator from one domain to a new domain using one or a few reference images. Building upon previous research that has focused on Target-domain Consistency, Large Diversity, and Cross-domain Consistency, we conclude two additional desired properties for GDA: Memory and Domain Association. To meet these properties, we proposed a novel method Domain Re-Modulation (DoRM). Specifically, DoRM freezes the source generator and employs additional mapping and affine modules (M&A module) to capture the attributes of the target domain, resulting in a linearly combinable domain shift in style space. This allows for high-fidelity multi-domain and hybrid-domain generation by integrating multiple M&A modules in a single generator. DoRM is lightweight and easy to implement. Extensive experiments demonstrated the superior performance of DoRM on both one-shot and 10-shot GDA, both quantitatively and qualitatively. Additionally, for the first time, multi-domain and hybrid-domain generation can be achieved with a minimal storage cost by using a single model. The code will be available at https://github.com/wuyi2020/DoRM.


翻译:在这项研究中,我们调查了少数发件人生成域适应(GDA)的任务,它涉及利用一个或几个参考图像将一个经过预先训练的生成器从一个领域转移到一个新的领域。根据以前侧重于目标-主坐标、大多样性和交叉域连接的研究,我们为GDA得出了另外两个想要的属性:记忆和域域协会。为了满足这些属性,我们提议了一个新颖的方法“保持再调节”(DORM)。具体地说,DoRM冻结源生成器,并使用额外的绘图和折合模块(M&A模块)来捕捉目标域的属性,从而导致在时态空间进行线性可透的域变化。这通过将多个 M&A模块整合到一个单一的发电机中,从而能够产生高度、宽度、多度和混合度的生成。DORM是轻度和易于执行的。广泛的实验显示DRM在一发和10发式GDA(DA)和定性两方面的优异性表现。此外,第一次,多度和混合域模块和混合-DODODADmamamamain 20的生成将使用一个单一的存储模式。

1
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员