Unsupervised domain adaptive object detection is a challenging vision task where object detectors are adapted from a label-rich source domain to an unlabeled target domain. Recent advances prove the efficacy of the adversarial based domain alignment where the adversarial training between the feature extractor and domain discriminator results in domain-invariance in the feature space. However, due to the domain shift, domain discrimination, especially on low-level features, is an easy task. This results in an imbalance of the adversarial training between the domain discriminator and the feature extractor. In this work, we achieve a better domain alignment by introducing an auxiliary regularization task to improve the training balance. Specifically, we propose Adversarial Image Reconstruction (AIR) as the regularizer to facilitate the adversarial training of the feature extractor. We further design a multi-level feature alignment module to enhance the adaptation performance. Our evaluations across several datasets of challenging domain shifts demonstrate that the proposed method outperforms all previous methods, of both one- and two-stage, in most settings.


翻译:无监督领域自适应目标检测是一项具有挑战性的视觉任务,目标检测器需要从标签丰富的源领域自适应到未标记的目标领域。最近的研究表明,基于对抗的领域对齐技术是有效的方法,其中特征提取器和领域鉴别器之间的对抗训练可以在特征空间中产生领域不变性。然而,由于领域偏移,领域鉴别,特别是在低级特征上,是一项简单的任务。这导致在领域鉴别器和特征提取器之间的对抗训练中存在平衡失调。在本文中,我们通过引入辅助正则化任务来改善训练平衡,从而实现更好的领域对齐。具体而言,我们提出对抗图像重建(AIR)作为正则化器,以促进特征提取器的对抗训练。我们还设计了一个多层特征对齐模块,以增强自适应性能。我们在几个具有挑战性领域偏移的数据集上的评估表明,所提出的方法在大多数情况下优于以前的所有一阶段和二阶段方法。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ECCV 2022 | 底层视觉新任务:Blind Image Decomposition
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员