Continual domain shift poses a significant challenge in real-world applications, particularly in situations where labeled data is not available for new domains. The challenge of acquiring knowledge in this problem setting is referred to as unsupervised continual domain shift learning. Existing methods for domain adaptation and generalization have limitations in addressing this issue, as they focus either on adapting to a specific domain or generalizing to unseen domains, but not both. In this paper, we propose Complementary Domain Adaptation and Generalization (CoDAG), a simple yet effective learning framework that combines domain adaptation and generalization in a complementary manner to achieve three major goals of unsupervised continual domain shift learning: adapting to a current domain, generalizing to unseen domains, and preventing forgetting of previously seen domains. Our approach is model-agnostic, meaning that it is compatible with any existing domain adaptation and generalization algorithms. We evaluate CoDAG on several benchmark datasets and demonstrate that our model outperforms state-of-the-art models in all datasets and evaluation metrics, highlighting its effectiveness and robustness in handling unsupervised continual domain shift learning.


翻译:连续的领域转移对于现实世界的应用构成了一个显著的挑战,特别是在没有新领域的标记数据的情况下。这种问题下获取知识的挑战被称为无监督的连续领域转移学习。现有的域自适应和泛化方法在解决这个问题方面存在限制,因为它们专注于适应特定领域或泛化到未看到的领域,但不能同时实现。在本文中,我们提出了互补域自适应和泛化(CoDAG),这是一个简单而有效的学习框架,将域自适应和泛化以互补的方式结合起来,实现无监督连续领域转移学习的三个主要目标:适应当前领域,泛化到未看到的领域,并防止忘记之前看到的领域。我们的方法是模型不可知的,这意味着它与现有的任何域自适应和泛化算法兼容。我们在几个基准数据集上评估了CoDAG,并证明我们的模型在所有数据集和评估指标上优于现有最先进的模型,突出了它处理无监督连续领域转移学习的有效性和鲁棒性。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年3月7日
专知会员服务
41+阅读 · 2020年12月1日
从ICML 2022看域泛化(Domain Generalization)最新进展
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员