In this work, we formulate and analyze a geometric multigrid method for the iterative solution of the discrete systems arising from the finite element discretization of symmetric second-order linear elliptic diffusion problems. We show that the iterative solver contracts the algebraic error robustly with respect to the polynomial degree $p \ge 1$ and the (local) mesh size $h$. We further prove that the built-in algebraic error estimator which comes with the solver is $hp$-robustly equivalent to the algebraic error. The application of the solver within the framework of adaptive finite element methods with quasi-optimal computational cost is outlined. Numerical experiments confirm the theoretical findings.
翻译:在这项工作中,我们为因对称二阶线性椭圆扩散问题产生的离散系统的迭代溶液设计并分析一种几何多格方法。我们表明,迭代求解器在多角度$p\ge 1美元和(当地)网状大小$h美元方面将代数错误强有力地结合了代数错误。我们进一步证明,求解器产生的内置代数误差估计仪相当于代数误差的美元-RObust值。我们概述了在适应性有限元素方法框架内应用的求解器与准最佳计算成本。数字实验证实了理论结论。