In this paper, we construct a quadrature scheme to numerically solve the nonlocal diffusion equation $(\mathcal{A}^\alpha+b\mathcal{I})u=f$ with $\mathcal{A}^\alpha$ the $\alpha$-th power of the regularly accretive operator $\mathcal{A}$. Rigorous error analysis is carried out and sharp error bounds (up to some negligible constants) are obtained. The error estimates include a wide range of cases in which the regularity index and spectral angle of $\mathcal{A}$, the smoothness of $f$, the size of $b$ and $\alpha$ are all involved. The quadrature scheme is exponentially convergent with respect to the step size and is root-exponentially convergent with respect to the number of solves. Some numerical tests are presented in the last section to verify the sharpness of our estimates. Furthermore, both the scheme and the error bounds can be utilized directly to solve and analyze time-dependent problems.
翻译:Translated abstract:
本文构建了一种求积方案,用于数值求解非局部扩散方程$(\mathcal{A}^\alpha+b\mathcal{I})u=f$,其中$\mathcal{A}^\alpha$是正则阴性算子$\mathcal{A}$的$\alpha$次幂。严格的误差分析得出了尖锐的误差界(除了一些可以忽略的常数)。误差估计包括了许多情形,包括$\mathcal{A}$的正则指数和谱角,$f$的平滑性,$b$和$\alpha$的大小。该求积方案对于步长来说是指数收敛的,对于求解次数来说是根-指数收敛。最后一节提供了一些数值测试,以验证我们估计的尖锐性。此外,该方案和误差界均可直接用于解决和分析时变问题。