项目名称: Eulerian bond-cubic 模型渗流性质的数值研究
项目编号: No.11205005
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 物理学II
项目作者: 丁成祥
作者单位: 安徽工业大学
项目金额: 15万元
中文摘要: 很多晶格统计模型的临界性质都可以通过渗流来描述,比如著名的 Ising 模和Potts 模型。而且,从渗流的角度研究问题,还可能发现一些从热力学角度不能发现的临界指数,这些临界指数在二维情况下有的已经有了库仑气体方法预言的结果,在三维情况下还是未知的或者只有数值结果。我们已经初步研究了 Euerian bond-cubic 模型的渗流性质。在本项目中,我们将对 Eulerian bond-cubic 模型的渗流性质做进一步的研究。研究的内容包括:(1)二维 Elerian bond-cubic 模型中,一种与晶格结构有关的新相变的临界渗流性质;(2)三维 Eulerian bond-cubic 模型的临界渗流性质,(3)三临界 Eulerian bond-cubic 模型的渗流性质。研究的主要方法为 Monte Carlo 模拟、转移矩阵计算和有限尺寸标度分析。
中文关键词: cubic 模型;Potts 模型;相变;蒙特卡罗;
英文摘要: The critical properties of many lattice models in statistical physics can be described by percolation, such as the famous Ising model and Potts model. Furthermore, from the view of percolation, it is possible to find some critical exponents those can't be found from the view of thermodynamic. In the two-dimensional case, some of the critical exponents have been predicted by Coulomb gas method. In the three-dimensional case, they are still unknown or only numerical results exist. We have do some preliminary research on the percolation properties of the Eulerian bond-cubic model. In this project, we will do further research on the percolation properties of the Eulerian bond-cubic model. The research includes three aspects: (1) the critical percolation properties of a lattice-relevant new phase transition of the two-dimensional Eulerian bond-cubic model. (2) the critical percolation properties of the three-dimensional Eulerian bond-cubic model, (3) the percolation properties of the tricritical Eulerian bond-cubic model. The main methods we used in the research include Monte Carlo simulation, transfer matrix calculation and finite-size scaling analysis.
英文关键词: cubic model;Potts model;phase transition;Monte Carlo;