Many loss functions have been derived from cross-entropy loss functions such as large-margin softmax loss and focal loss. The large-margin softmax loss makes the classification more rigorous and prevents overfitting. The focal loss alleviates class imbalance in object detection by down-weighting the loss of well-classified examples. Recent research has shown that these two loss functions derived from cross entropy have valuable applications in the field of image segmentation. However, to the best of our knowledge, there is no unified formulation that combines these two loss functions so that they can not only be transformed mutually, but can also be used to simultaneously address class imbalance and overfitting. To this end, we subdivide the entropy-based loss into the regularizer-based entropy loss and the focal-based entropy loss, and propose a novel optimized hybrid focal loss to handle extreme class imbalance and prevent overfitting for crack segmentation. We have evaluated our proposal in comparison with three crack segmentation datasets (DeepCrack-DB, CRACK500 and our private PanelCrack dataset). Our experiments demonstrate that the focal margin component can significantly increase the IoU of cracks by 0.43 on DeepCrack-DB and 0.44 on our PanelCrack dataset, respectively.


翻译:许多损失功能来自跨天体损失功能,如大型海边软体损失和焦点损失。大型海边软体损失使分类更加严格,防止过度配制。焦点损失通过降低分类性实例损失的重量,减轻物体检测中的分类不平衡。最近的研究表明,交叉星体产生的这两个损失功能在图像分割领域具有宝贵的应用。然而,据我们所知,没有将这两个损失功能结合起来的统一配方,以便它们不仅能够相互转变,而且也可以用来同时处理阶级不平衡和过度装配问题。为此,我们将基于英特质的损失分解成基于正态的英特质损失和基于核心的英特质损失,并提出新的优化混合中心损失,以处理极端星系不平衡和防止过度配制裂分解。我们比较了我们的建议与三个裂分解数据集(DeepCrack-DB、CRACK500和我们私人小组的Crack数据集)的比较。我们进行的实验表明,在以正质导器为基础的英基导断差部分可以极大地增加我们IR4的IRack-C数据。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
17+阅读 · 2020年11月15日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员