项目名称: Volterra积分微分方程的多区间Chebyshev和Legendre谱配置法
项目编号: No.11501098
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 贾红丽
作者单位: 东华大学
项目金额: 18万元
中文摘要: 谱方法具有高精度,并被广泛地应用于物理、工程和生物中有关问题的计算。近年来,利用谱方法来数值求解Volterra积分微分方程正成为该领域的研究热点之一,具有重要的理论意义和实际应用价值。本项目主要研究以下问题:非线性Volterra积分方程的多区间Chebyshev谱配置法,非线性滞时Volterra泛函积分微分方程的多区间Chebyshev谱配置法以及二维Volterra积分方程的多区间Legendre谱配置法。这些问题的解决将进一步拓广谱方法的应用范围,发展和丰富积分微分方程的数值解法,并为该领域的有关问题提供一些高精度的快速算法。
中文关键词: 谱方法;配点方法;积分方程;积分微分方程;快速算法
英文摘要: Spectral method often provides exceedingly accurate numerical results with relatively less degree of freedom, and has been widely used for numerical simulations of various problems arising in physics, engineering and biology. In recent years, it is becoming one of research hotspots for spectral method to solve numerically Volterra integro-differential equations. In this proposal, we investigate multi-interval Chebyshev spectral collocation methods for nonlinear Volterra integral equations, nonlinear Volterra functional integro-differential equations with vanishing variable delays, and multi-interval Legendre spectral collocation methods for two-dimensional Volterra integral equations. They will further expand the applications of spectral method, enrich the numerical methods of the integro-differential equations, and provide some high accuracy algorithms for related problems in this field.
英文关键词: spectral methods;spectral collocation methods; integral equation;integro-differential equation; fast algorithm