Average-K classification is an alternative to top-K classification in which the number of labels returned varies with the ambiguity of the input image but must average to K over all the samples. A simple method to solve this task is to threshold the softmax output of a model trained with the cross-entropy loss. This approach is theoretically proven to be asymptotically consistent, but it is not guaranteed to be optimal for a finite set of samples. In this paper, we propose a new loss function based on a multi-label classification head in addition to the classical softmax. This second head is trained using pseudo-labels generated by thresholding the softmax head while guaranteeing that K classes are returned on average. We show that this approach allows the model to better capture ambiguities between classes and, as a result, to return more consistent sets of possible classes. Experiments on two datasets from the literature demonstrate that our approach outperforms the softmax baseline, as well as several other loss functions more generally designed for weakly supervised multi-label classification. The gains are larger the higher the uncertainty, especially for classes with few samples.
翻译:一种用于深度Average-K分类的双头损失函数
翻译后的摘要:
Average-K分类是一种替代Top-K分类的方法,其中返回的标签数随输入图像的歧义性而变化,但必须平均到所有样本的K个标签。解决这个任务的一个简单方法是对使用交叉熵损失函数训练的模型的softmax输出进行阈值处理。理论上证明这种方法是渐近一致的,但对于有限的样本集,无法保证它是最优的。在本文中,我们提出了一种基于多标签分类头的新损失函数,除了经典的softmax外,还可以使用伪标签进行训练。这第二个头是使用通过对softmax头进行阈值处理生成的伪标签进行训练的,同时保证平均返回K个类。我们展示了这种方法允许模型更好地捕捉类之间的模糊性,结果能够返回更一致的可能类集。文献中的两个数据集的实验表明,我们的方法优于softmax基线以及几个设计更加通用的针对弱监督多标签分类的损失函数。收益在不确定性越高的情况下更大,特别是对于样本较少的类。